Corn germ meal

Phosphorus digestibility and concentration of digestible and metabolizable energy in corn, corn coproducts, and bakery meal fed to growing pigs

Rojas, O. J., Y. Liu, and H. H. Stein. 2013. Phosphorus digestibility and concentration of digestible and metabolizable energy in corn, corn coproducts, and bakery meal fed to growing pigs. J. Anim. Sci. 91:5326-5335. Link to abstract

Phosphorus digestibility and concentration of digestible and metabolizable energy in corn, corn co-products, and bakery meal fed to pigs

Rojas, O. J. and H. H. Stein. 2013. Phosphorus digestibility and concentration of digestible and metabolizable energy in corn, corn co-products, and bakery meal fed to pigs. J. Anim. Sci. 91(Suppl. 2):122 (Abstr.) Link to abstract (.pdf)

Phosphorus digestibility in corn, corn co-products, and bakery meal fed to growing pigs

With the prices of cereal grains rising, opportunities to reduce feed costs by using alternative ingredients are being explored. One source of alternative feed ingredients is co-products from the use of corn in the production of food for humans. Only limited published information is available on the digestibility of phosphorus in corn co-products derived from the human food industry.

Phosphorus from plant sources is often bound to phytate, which decreases the availability of the phosphorus to the pigs because pigs do not produce the enzyme phytase. The addition of microbial phytase to diets containing corn and soybean meal increases phosphorus digestibility in these ingredients. However, no data have been published on the effect of adding phytase to diets containing hominy feed,  bakery meal, corn gluten meal, corn gluten feed, or corn germ meal.

Therefore, an experiment was performed to determine the apparent (ATTD) and standardized (STTD) total tract digestibility of phosphorus in hominy feed, bakery meal, corn gluten meal, corn gluten feed, and corn germ meal, and to compare these values to the values obtained for corn and DDGS. The effect of the addition of microbial phytase to the diets on the digestibility of phosphorus in the experimental ingredients was also measured.

Concentration of digestible and metabolizable energy in corn, corn co-products, and bakery meal fed to growing pigs

With the prices of cereal grains rising, opportunities to reduce feed costs by using alternative ingredients are being explored. One source of alternative feed ingredients is co-products from the human food industries. However, little information has been published on the digestibility of energy in these ingredients. Therefore, an experiment was conducted to determine the concentrations of digestible and metabolizable in hominy feed, bakery meal, corn gluten meal, corn gluten feed, and corn germ meal, and to compare these values with values obtained for corn and distillers dried grains with solubles (DDGS).

Digestibility of amino acids in corn, corn coproducts, and bakery meal fed to growing pigs

Almeida, F. N., G. I. Petersen, and H. H. Stein. 2011. Digestibility of amino acids in corn, corn coproducts, and bakery meal fed to growing pigs. J. Anim. Sci. 89:4109-4115. Link to full text (.pdf)

Digestibility of amino acids in corn, corn co-products, and bakery meal fed to growing pigs

Rising costs of traditional swine feeds are causing many producers to look for alternative feedstuffs to deliver nutritional value at a lower cost. The corn milling and fermentation industries, and the human food industry, create co-products which can be fed to livestock.  One of these, distillers dried grains with solubles (DDGS), has been found to be suitable for inclusion in swine diets up to 30%. Other co-products have not been as extensively studied. This experiment was performed to measure the apparent (AID) and standardized (SID) ileal digestibility of crude protein and amino acids in corn gluten meal, corn gluten feed, corn germ meal, hominy feed, and bakery meal in growing pigs and to compare these values to the values observed for DDGS and corn.