Xylanase

Effects of full fat or defatted rice bran on growth performance and blood characteristics of weanling pigs

Casas, G. A. and H. H. Stein. 2016. Effects of full fat or defatted rice bran on growth performance and blood characteristics of weanling pigs. J. Anim. Sci. 94:4179-4187. Link to abstract

Authors: 

Effects of full fat or defatted rice bran and microbial xylanase on growth performance of weanling pigs

Casas, G. A. and H. H. Stein. 2016. Effects of full fat or defatted rice bran and microbial xylanase on growth performance of weanling pigs. J. Anim. Sci. 94(E-Suppl. 5):441 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Effects of microbial xylanase on digestibility of dry matter, organic matter, neutral detergent fiber, and energy and the concentrations of digestible and metabolizable energy in rice coproducts fed to weanling pigs

Casas, G. A. and H. H. Stein. 2016. Effects of microbial xylanase on digestibility of dry matter, organic matter, neutral detergent fiber, and energy and the concentrations of digestible and metabolizable energy in rice coproducts fed to weanling pigs. J. Anim. Sci. 94:1933-1939. Link to full text (.pdf)

Authors: 

Effects of full fat or defatted rice bran on growth performance of weanling pigs

Rice bran is the brown outer layer of brown rice, which is removed from brown rice to produce white polished rice for human consumption. Rice bran may be full fat, containing 14 to 25% fat, or defatted, which reduces the concentration of fat to less than 5%.

Rice bran has a high concentration of non-starch polysaccharides (NSP), primarily arabinoxylan and cellulose. NSPs decrease nutrient digestibility and thus limit the inclusion of rice bran in weanling pig diets. Recent data from our laboratory indicate that adding exogenous xylanase to diets containing full fat rice bran (FFRB) or defatted rice bran (DFRB) increases the concentrations of digestible and metabolizable energy. The objective of this experiment was to determine the effects of increased inclusion levels of FFRB or DFRB to diets without or with exogenous xylanase on growth performance.

Authors: 
Publication Type: 

Xylanase responses on apparent ileal digestibility of nutrients, fiber and energy in growing pigs fed corn, 30% corn co-products and soybean meal based diets as influenced by microbial phytase and acclimatization period

Kiarie, E., Y. Liu, M. C. Walsh, H. H. Stein, and L. Payling. 2016. Xylanase responses on apparent ileal digestibility of nutrients, fiber and energy in growing pigs fed corn, 30% corn co-products and soybean meal based diets as influenced by microbial phytase and acclimatization period. J. Anim. Sci. 94(Suppl. 2):112-113 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Effects of exogenous xylanase on digestibility of dry matter, organic matter, neutral detergent fiber, and energy and the concentrations of digestible and metabolizable energy in rice co-products fed to weanling pigs

Casas, G. A. and H. H. Stein. 2016. Effects of exogenous xylanase on digestibility of dry matter, organic matter, neutral detergent fiber, and energy and the concentrations of digestible and metabolizable energy in rice co-products fed to weanling pigs. J. Anim. Sci. 94(Suppl. 2):107 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Comparative efficacy of xylanases on energy and nutrient digestibility in growing pigs fed corn- or wheat-based diets

Kiarie, E., L. F. Romero, S. Arent, R. Lorentsen, and H. H. Stein. 2015. Comparative efficacy of xylanases on energy and nutrient digestibility in growing pigs fed corn- or wheat-based diets. J. Anim. Sci. 93(Suppl. s3):225 (Abstr.) Link to abstract (.pdf)

Publication Type: 

Effects of xylanase on the concentration of digestible and metabolizable energy in rice co-products fed to weaning pigs

Several co-products from rice processing can be used as animal feed. Brown rice is the whole rice grain that is left after the hull layer has been removed, leaving the germ, starchy endosperm, and bran. Rice bran is the outer brown layer of brown rice, which is removed to produce white rice. It is high in fiber, and also contains about 15% crude protein and 14 to 20% fat. Rice bran can be fed as full fat rice bran or defatted rice bran. Broken rice, or brewer's rice, consists of white rice grains that have been damaged in processing. It is high in starch and contains little fat, fiber, or protein (Table 1).

Non–starch polysaccharides (NSPs), primarily arabinoxylan and cellulose, comprise 20 to 25% of defatted rice bran. NSPs reduce nutrient absorption and energy digestibility. Addition of exogenous xylanase to wheat co-products, which also have high concentration of NSPs, may improve digestibility of energy, but there is limited information about the effects of adding exogenous xylanases to rice co-products. Therefore, an experiment was conducted to determine the effect on concentrations of digestible energy (DE) and metabolizable energy (ME) of adding exogenous xylanase to diets containing full fat rice bran (FFRB), defatted rice bran (DFRB), brown rice, or broken rice.

Authors: 
Publication Type: