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ABSTRACT: Six experiments were conducted to evaluate the negative effects of heat damage 

on the nutritional composition and AA digestibility of feedstuffs fed to pigs, and also to 

determine the negative effects of feeding heat-damaged soybean meal (SBM) or heat-damaged 

distillers dried grains with solubles (DDGS) on growth performance of weanling pigs. In 

experiments 1, 2, 3, and 4, the primary objective was to determine the effects of heat treatment 

on the standardized ileal digestibility (SID) of AA in DDGS, canola meal, sunflower meal 

(SFM), and cottonseed meal (CSM) fed to pigs. The second objective was to develop regression 

equations that may be used to predict the concentration of SID AA in these ingredients from their 

nutrient composition. In Exp. 1, the SID of Lys was quadratically reduced (P < 0.05) from 66.8% 

in the non-autoclaved DDGS to 54.9, 55.3, and 51.9% in the DDGS that was autoclaved for 10, 

20, or 30 min, respectively. The concentration of SID Lys may be best predicted by an equation 

that includes the concentration of acid detergent insoluble N (ADIN; r
2
 = 0.84). In Exp. 2, 

autoclaving of canola meal reduced (quadratic, P < 0.01) the SID of CP and all AA. The 

concentration (%) of SID Lys in canola meal may be predicted by regression equations using the 

concentration (%) of reducing sugars (r
2
 = 0.96) as the main predictor variable. Likewise, the 

concentrations of SID AA for most AA may also be predicted from the nutrient composition of 

canola meal. In Exp. 3, the SID of Lys in SFM was reduced (linear, P < 0.05) from 83.2 to 

63.5% in non-autoclaved SFM or SFM autoclaved for 60 min at 130°C, respectively. The 

concentrations of Lys and reducing sugars in SFM may be used as good predictors (r
2
 = 0.85) to 

estimate the concentration of SID Lys in SFM. In Exp. 4, the SID of Lys in CSM was greater (P 

< 0.05) in non-autoclaved CSM (66.2%) than in autoclaved (60 min at 130°C) CSM (54.1%). 

The equation (r
2
 = 0.68) that best predicted the concentration of SID Lys in CSM includes the 

concentration ADIN. Conclusions from the first 4 experiments are that the SID of AA decreases 
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as a result of heat damage, but these reductions may be linear or quadratic depending on the type 

of ingredient. It is also concluded from these experiments that chemical composition may be 

used to predict the concentration of SID Lys in DDGS, canola meal, SFM, and CSM, but the 

predictor variables vary depending on the ingredient.  Experiments 5 and 6 were conducted to 

investigate if adjustments in diet formulations based on either total analyzed AA or standardized 

ileal digestible (SID) AA may be used to eliminate negative effects of including heat-damaged 

soybean meal (SBM) or heat-damaged distillers dried grains with solubles (DDGS) in diets fed 

to weanling pigs. In Exp. 5, 4 corn-SBM diets were formulated. Diet 1 contained non-autoclaved 

SBM and this diet was formulated on the basis of analyzed AA concentrations and using SID 

values from the AminoDat
®
 (2006) database. Three additional diets were formulated using 

autoclaved SBM. Diet 2 was formulated similar to Diet 1 except that the non-autoclaved SBM 

was replaced by the autoclaved SBM. Diet 3 was formulated by adjusting AA inclusion in the 

diet on the basis of analyzed total AA concentrations in the autoclaved SBM and published SID 

values (AminoDat
®
, 2006). Diet 4 also contained autoclaved SBM, but the formulation of this 

diet was adjusted on the basis of analyzed AA in the autoclaved SBM and SID values that were 

adjusted according to the degree of heat damage in this source of SBM. The G:F was greater (P 

< 0.05) for pigs fed Diet 1 compared with pigs fed the other diets. Pigs fed Diet 4 had greater (P 

< 0.05) G:F than pigs fed Diet 2. In Exp. 6, 4 diets containing corn, SBM (8.5%), and DDGS 

(non-autoclaved or autoclaved; 22%) were formulated using the concepts described for Exp. 5, 

except that heat-damaged DDGS, was used in the diets. Pigs fed Diet 1 had greater (P < 0.05) 

G:F than pigs fed the other diets, but no differences were observed for G:F among pigs fed diets 

containing autoclaved DDGS. Results demonstrate that the negative effects of heat damage may 

be ameliorated if the reduced concentration as well as the reduced digestibility of AA in heat-
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damaged SBM is corrected. Diets for weaned pigs containing up to 22% of heat-damaged DDGS 

reduces performance of pigs compared with diets containing DDGS that has not been heat-

damaged, but correction for the reduced concentration and the reduced digestibility of AA in 

heat-damaged DDGS may not be of practical importance for weaned pigs. 

Key words: amino acid, digestibility, heat damage, pig
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CHAPTER 1 

INTRODUCTION 

Feed costs account for the majority of the variable costs of swine production. Protein and 

energy are the main nutrients in swine diets and, thus, understanding their utilization by the 

animal is important to successful swine production. Many of the feed ingredients used in swine 

diets are processed in different ways. Among these ingredients, oilseed meals such as canola 

meal, sunflower meal, and cottonseed meal undergo heat processing to improve their nutritional 

quality and also to remove solvents that are commonly used during oil extraction. As such, these 

oilseed meals are exposed to varying degrees of heat, which, in excess, is deleterious to protein 

quality. Amino acids are required for growth and performance of pigs. Lysine, which is the first 

limiting AA in most swine diets, is particularly affected by heat processing of feed ingredients 

because it reacts with reducing sugars upon heat processing and initiates the Maillard reactions. 

Consequently, Lys that participates in the Maillard reactions becomes unavailable for protein 

synthesis in vivo and, therefore, reduced growth performance is expected under such conditions. 

Because of the variation in feed processing and the potential negative effects caused by heat 

processing on protein quality, it is important to develop strategies to evaluate the nutritional 

quality of protein and to determine the extent to which heat processing can damage feed proteins. 

A review of the literature regarding the Maillard reactions and their effects on feed ingredient 

utilization by pigs is provided in Chapter 2. In Chapters 3 to 5, we provide data on the 

digestibility of AA in distillers dried grains with solubles, canola meal, sunflower meal, and 

cottonseed meal as affected by heat damage, and we also provide suggestions for evaluating the 

protein quality of these feed ingredients. Performance of weaning pigs fed diets containing heat-
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damaged soybean meal or heat-damaged distillers dried grains with solubles is described in 

Chapter 6, and different ways to ameliorate negative effects of heat damage also are evaluated.   
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CHAPTER 2 

MAILLARD REACTIONS AND THEIR EFFECTS ON THE NUTRITIONAL QUALITY 

OF FEED INGREDIENTS FOR PIGS: REVIEW OF LITERATURE 

 

INTRODUCTION 

The nutritional value of feed ingredients may be reduced during storage and processing 

(Friedman, 1996). This is likely a consequence of a combination of heat and humidity that leads 

to the Maillard reaction, which starts with the condensation between an amino group of an AA or 

protein and a carbonyl group of a reducing sugar. Lysine is an essential AA that has an ɛ-amino 

group that easily condenses with the carbonyl group of a reducing sugar (Nursten, 2005). When 

the Maillard reaction occurs, Lys availability is reduced (Pahm et al., 2008; Boucher et al., 

2009). During AA analysis, however, Lys is partially recovered leading to an overestimation of 

the available Lys. Because of this overestimation, standard AA analysis procedures may not be 

adequate to determine the amount of available Lys in feed ingredients that have been heat 

processed. Therefore, it is believed that analysis of reactive Lys is more accurate than standard 

Lys analysis (Boucher et al., 2009).  

There are several methodologies developed for the calculation of reactive Lys. These 

procedures include the guanidination procedure (Rutherfurd et al., 1997), the furosine procedure 

(Desrosiers et al., 1989), the fluorodinitrobenzene (FDNB) difference method (Rao et al., 1963), 

and the sodium borohydride method (Hurrell and Carpenter, 1974). Despite their advantages and 

disadvantages, the 2 most commonly used procedures are the FDNB and homoarginine methods 

(Rutherfurd and Gilani, 2009). Because of the complexity of the Maillard reaction as well as the 

variety of methods used to determine reactive Lys in heat-damaged feed ingredients, the 

objectives of this literature review are to provide information describing the Maillard reaction, 
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factors that affect the rate of the reaction, and metabolism of Maillard reaction products in vivo. 

Objectives also include describing methodologies for estimation of reactive Lys in heat-damaged 

feed ingredients or diets. 

 

LYSINE NOMENCLATURE AND FATE IN VIVO 

 The term, total Lys, refers to the concentration of reactive Lys plus the concentration of 

blocked Lys (Figure 2.1; Rutherfurd, 2010). Reactive Lys refers to the Lys that has not 

undergone Maillard reactions and the ε-amino group is not bound to other molecules. Blocked 

Lys is the Lys that was bound to Amadori products as a result of Maillard reactions. Acid 

hydrolysis of proteins during standard AA analysis, however, releases some of the blocked Lys 

from the Amadori product, which then is called regenerated Lys. This regenerated Lys appears in 

the same peak as reactive Lys in the chromatogram and, therefore, is included in the peak for 

total Lys. Therefore, in feed ingredients that have been heat processed, the concentration of Lys 

determined by standard AA analysis overestimates the concentration of reactive Lys that is 

available for protein synthesis by the pig, leading to formulation of diets that do not necessarily 

meet the Lys requirement of pigs, and possibly reducing growth or reproductive performance of 

pigs.  

 Reactive Lys has 2 fates in vivo: it may be absorbed and utilized by the animal, or it may 

pass through the gastrointestinal tract and be excreted in feces (Rutherfurd, 2010). This is in 

agreement with data reported by Pahm et al. (2009) who determined that the standardized ileal 

digestibility of reactive Lys in 12 sources of corn distillers dried grains with solubles (DDGS) 

was 67% on average. It was suggested that the reason for the relatively low digestibility of Lys 

may be that corn DDGS has a relatively high neutral detergent fiber (NDF) concentration, which 
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contributes to increased endogenous losses of Lys. Another reason may be that severe heat 

damage can lead to cross-linking of proteins, which is believed to impair digestion of Lys. 

 

MAILLARD REACTION 

The Maillard reaction is a series of reactions that starts with the condensation of an amino 

group of an AA with a carbonyl group of a reducing sugar (Figure 2.2; Mauron, 1981; Gerrard, 

2002). This reaction was first described by Louis Maillard in 1912 when he observed the 

formation of brown pigments during heating of glucose and Lys. Because of the complexity of 

reactions, the series of reactions is normally divided into 3 main stages: initial, intermediate, and 

late stages of the Maillard reaction (Nursten, 2005). 

Initial Stage 

The initial stage of the Maillard reaction is characterized by formation of glycosylamine, 

which is later converted to Amadori compounds (de Kok and Rosing, 1994) in a series of 

reactions (Gerrard, 2002). The reaction starts with the condensation of an amino group of an AA 

or peptide with the carbonyl group of a sugar. The terminal amino group of all AA is susceptible 

to this reaction, as is the epsilon amino group of Lys. If AA are present in proteins, however, the 

terminal AA groups are used to form peptide bonds and they are, therefore, not available for 

condensation. The epsilon amino group of Lys, however, may condense with reducing sugars, 

and Lys is, therefore, often the AA that is most affected by Maillard reactions. Schiff bases are 

formed after dehydration of the condensation products. These Schiff bases may undergo 

sequential rearrangements (Amadori rearrangements) yielding the cyclic glycosylamine 

(Gerrard, 2002). After a protonation of the ring oxygen atom, glycosylamine is converted to 

Amadori compounds. All reactions up to the formation of Amadori compounds are reversible 
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depending on the conditions (pH, temperature, and rate of mutarotation) in which the reactions 

occur (Yaylayan and Huyghues-Despointes, 1994).  

Intermediate Stage 

The intermediate stage of the Maillard reaction includes 3 main reactions: sugar 

dehydration, sugar fragmentation, and AA degradation (Nursten, 2005). During sugar 

dehydration reactions, furfurals (under acid conditions) and reductones (under neutral or alkaline 

conditions) are the end-products. Dehydration of xylose yields furfural whereas dehydration of 

glucose yields hydroxymethylfurfural (HMF). During these reactions, 3 molecules of water are 

lost. In contrast, in the sugar dehydration reactions to form reductones, only 2 molecules of water 

are lost (Nursten, 2005). 

Depending on the Amadori compound, sugar fragmentation can form various end 

products. There are 2 main mechanisms by which sugar fragmentation may occur: 

retroaldolisation and oxidative fission (Nursten, 2005). Some of the products from sugar 

fragmentation include glycolaldehyde, acetol, ethanol, pyruvic acid, lactic acid, formic acid, and 

formaldehyde among others (Nursten, 2005). Amino acid degradation or Strecker degradation 

occurs when α-AA are oxidized to form aldehydes, and these reactions involve the transfer of 

ammonia to other components in the system as well as liberation of CO2 (Nursten, 2005). 

Final Stage 

The final stage of the Maillard reaction involves aldol condensations and an aldehydes-amine 

condensation reaction leading to the formation of polymeric compounds called melanoidins 

(Nursten, 2005). The aldol condensation reactions are initiated by the formation of aldehydes 

from the products formed in the intermediate stage of the Maillard reaction, with amines and 

carbonyl compounds (probably from lipid oxidation) serving as catalysts. Melanoidins that are 
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formed during this final stage contain 3 to 4% N and their composition may vary depending on 

the substrates by which they were formed. The nature of melanoidins is very complex and work 

has been conducted to isolate and purify melanoidins from foods (Silván et al., 2006). Thus, 

Lindenmeier et al. (2004) were able to identify one melanoidin structure that is formed from the 

reaction between the Lys side chains and acetylformoin. This melanoidin, called pronyl-L-Lys, 

was isolated from crust and crumbs of bread.  

  

KINETICS OF THE MAILLARD REACTION 

 Some of the factors affecting the rate of Maillard reactions products formation are 

temperature, pH, type of substrate, and water activity. Each of these factors may affect the 

kinetics of the reactions in specific ways. 

Temperature 

The Maillard reaction can be initiated at temperatures similar to that of the human body. 

In fact, these reactions happen in vivo at 36˚C (Ledl and Schleicher, 1990). A fraction of 

hemoglobin, HbA1c, which is normally present in high concentrations in diabetic patients, has a 

hexose bound at the N-terminal Val of the β-chain in the form of 1-amino-1-deoxyfructose. The 

formation of HbA1c is a result of the Maillard reaction because in vitro incubation of another 

fraction of hemoglobin (HbA0) with glucose yields HbA1c through the addition of glucose to the 

N-terminal amino group of hemoglobin, which gives rise to the Schiff`s base and further 

Amadori compounds (Ledl and Schleicher, 1990).  

 Processing of foods and feed ingredients at high temperatures also may lead to the 

Maillard reaction. During production of DDGS, corn undergoes several steps under different 

temperatures (32 to 100˚C) that may lead to the formation of Maillard reaction products (Pahm et 
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al., 2008). The study of Maillard reaction products originating from food processing, however, is 

very complex due to the variety of conditions used in food processing and the many different 

products that are formed under each of these conditions (Argirova et al., 2010). 

pH   

Results of many experiments have indicated that increasing pH favors the Maillard 

reaction. The color formation in a Lys-glucose system was increased with a pH increase from 4.0 

to 8.0 (Lee et al., 1984), and this conclusion was confirmed by Leahy and Reineccius (1989a) 

who observed that formation of pyrazines, which are heterocyclic compounds formed from 

Maillard reactions, was 500 times greater at pH 9.0 than at pH 5.0. The Maillard reaction itself 

also affects the pH (Delgado-Andrade et al., 2004). When heating glucose-Lys and glucose-

methionine model systems, the pH decreased as heating time increased, which likely was a result 

of basic amino group disappearance at the early stages of the reaction. After formation of 

Amadori compounds, pH also plays an important role because it determines the pathway of 

fragmentation (intermediate stage) in which a low pH favors 1,2 enolisation leading to the 

formation of formaldehyde, glycolaldehyde, and glyceraldehyde. In contrast, a high pH favors 

2,3 enolisation leading to the formation of other end-products that may include butanedione, 

isomaltol, and acetic acid (Nursten, 2005).  

Type of Substrate 

Alkylpyrazines, which are heterocyclic, N-containing compounds (Leahy and Reineccius, 

1989b) may be among the end-products of the Maillard reactions (Hodge, 1953). In an attempt to 

investigate effects of both the type of AA and the type of sugar on the formation of pyrazines, 

Leahy and Reineccius (1989b) developed model systems in which 2 AA (Asp and Lys) were 

tested in combination with 3 sugars (glucose, fructose, and ribose). The formation of pyrazines 
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was evaluated after heating the solutions (pH = 9.0) at 95˚C for 2 h. Results of this study 

indicated that Lys systems yielded more pyrazines than Asp systems, especially when reacted 

with glucose. When comparing the effects of type of sugar, glucose yielded more pyrazines than 

fructose and ribose, regardless of the type of AA used in the system. In another study, Shibamoto 

and Bernhard (1977) observed that pentoses yielded more pyrazines than hexoses. These 

observations indicate that both the type of AA and the type of reducing sugar in a particular feed 

ingredient may have a direct effect on the rate of the Maillard reactions product formation and on 

the fate of the AA involved in it. 

Water Activity and Relative Humidity 

Water activity is the ratio of the water vapor pressure over a product to the water vapor 

pressure over pure water and can be converted to relative humidity if multiplied by 100 (Hahn-

Hägerdal, 1986). The rate of Maillard reaction product formation is increased as water activity is 

decreased (van Boekel, 2001). This is likely due to the fact that as water activity decreases, the 

reactants become more concentrated. At a certain water activity, however, the increase in the 

reactant concentration prevents them from easily diffusing, which leads to a decrease in the rate 

of Maillard reactions. A maximum rate of reaction has been observed at water activities between 

0.3 and 0.7, and as the relative humidity increases, the rate of reaction decreases (Eichner and 

Karel, 1972). The maximum rate of reaction occurs between 60 and 80% relative humidity, but 

the optimal relative humidity for the Maillard reaction depends on the food or model systems 

used (Acevedo et al., 2006). 
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METABOLISM OF MAILLARD REACTION PRODUCTS 

A review of the metabolic transit of Maillard reaction products has been published (Faist 

and Erbersdobler, 2001). According to this review, Amadori products and advanced glycation 

end-products resulting from the Maillard reaction may have 3 fates in vivo: 1) absorption upon 

protein release by digestive enzymes or gut microbiota, 2) metabolism by bacteria in the 

gastrointestinal tract, and 3) excretion via feces and urine. 

 Schiff`s Bases 

 The utilization of Schiff`s bases by rodents is similar to that of free Lys (Finot and 

Magnenat, 1981), and when rats were fed ɛ-N-salicylidene-L-lysine and ɛ-N-benzylidine-L-

lysine, the growth responses were similar to those obtained by rats fed free Lys. The reason for 

this observation is most likely that the Schiff`s bases are formed by reactions that are reversible 

under acidic conditions. Therefore, when feed containing Schiff`s bases reaches the stomach, 

Lys may be regenerated because of the acidic conditions in the stomach. 

Amadori Compounds 

 Amadori compounds may be either excreted in feces or absorbed and excreted in urine 

(Erbersdobler et al., 1981). Absorption of ɛ-fructose-lysine occurs by passive diffusion and fecal 

excretion of ɛ-fructose-lysine has been shown in a narrow range between 1 and 3% of ingested 

protein bound ɛ-fructose-lysine (Faist and Erbersdobler, 2001). The excretion of ɛ-fructose-

lysine, however, has shown some variability. Rats that were fed protein bound ɛ-fructose-lysine 

excreted 60% of total intake in the urine (Finot and Magnenat, 1981). In humans adults, only 3% 

of ingested protein ɛ-fructose-lysine was excreted via urine (Faist and Erbersdobler, 2001), 

whereas in human infants, the excretion of protein bound ɛ-fructose-lysine via urine 

corresponded to 16% of total intake (Niederweiser et al., 1975). 
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 Amadori compounds may be degraded by bacteria (e.g., Pseudomonas spp. in soil; 

Gerhardinger et al., 1995), and incubation of protein-bound fructose-lysine with rat intestinal 

microorganisms for 48 h resulted in approximately 80% degradation (Erbersdobler et al., 1970). 

Amadori compounds cannot be utilized for protein synthesis in the body because formation of 

Amadori compounds is an irreversible process and Lys cannot be regenerated from Amadori 

compounds. The majority of the absorbed Amadori compounds are, therefore, excreted in urine.  

 Amadori compounds also may accumulate in different tissues of the body. Fructose-

lysine accumulation in tissues was demonstrated by Finot and Magnenat (1981) who observed 

that the majority of accumulation occurs in the kidneys, although fructose-lysine may also 

accumulate in other tissues such as liver and pancreas. 

Melanoidins 

 Melanoidins are partially digested and absorbed by the intestines (Faist and Erbersdobler, 

2001; Tuohy et al., 2006). The absorbed melanoidins may be retained in the kidneys (Faist and 

Erbersdobler, 2001). Low molecular weight non-absorbed melanoidins appear to be degraded in 

the intestines while the high molecular weight non-absorbed melanoidins apparently are not 

degraded in significant amounts (O`Brien and Morrissey, 1989). Rats that were fed melanoidins 

formed by the reaction of Gly with 
14

C-glucose excreted on average 0.96 and 92.6% of ingested 

radioactivity in the urine and feces, respectively, whereas 1.6% was retained in the carcass and 

another 1.5% was expired as 
14

CO2 (Finot, 2005). These melanoidins were excreted unmodified 

in feces, which indicates that melanoidins are not metabolized by the microbes in the 

gastrointestinal tract. Valle-Riestra and Barnes (1970) also observed that melanoidins are 

partially absorbed in the small intestine of rats, but the majority (74%) is excreted in feces and 

only 3% is excreted in urine. Thus, in feed ingredients that have undergone advanced Maillard 
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reactions, Lys cannot be regenerated in the gastrointestinal tract and, therefore, cannot be utilized 

for protein synthesis. 

 

AMADORI COMPOUND DEGRADING ENZYMES 

 Fructosyl amino acid oxidases (FAOXs) are enzymes present in fungi and bacteria that 

have the capacity to cleave the ketoamine bond in the Amadori compounds yielding the 

corresponding AA, glucosone, and H2O2 (Deppe et al., 2010; Lin and Zheng, 2011). Although 

these enzymes are present in fungi (i.e., Achaetomiella, Achaetomium, Apergillus, and 

Fusarium), bacteria (i.e., Arthrobacter and Pseudomonas), and in yeast (i.e., Debaryomyces and 

Pichia), no evidence of the presence of FAOXs in mammalian organisms has been reported (Lin 

and Zheng, 2011). However, fructosamine 3-kinase (FN3K), which is another class of Amadori 

compound degrading enzymes, is present in mammals (Deppe et al., 2010). When fructosamine 

is the starting Amadori compound, FN3K phosphorylates the C3 of fructosamine, which yields 

fructosamine 3-phosphate. This compound then goes through an autocatalytic degradation that 

yields 3-desoxyglucosone, the original amino compound (i.e., amino compound that initially 

reacted with glucose), and inorganic phosphate (Deppe et al., 2010). A third class of Amadori 

compound degrading enzymes is called fructosamine 6-kinases (FN6K). These enzymes 

phosphorylate the C6 of fructosamine to form fructosamine 6-phosphate, which is degraded by 

the enzyme, deglycase, to form glucose 6-phosphate and a free amino compound (Deppe et al., 

2010). The practical use of FAOXs has been limited because these enzymes only react with 

small glycated substrates (e.g., fructosyl amino acids or dipeptides), but an experiment conducted 

by Zheng et al., (2010) indicates that manipulation of FAOXs may be possible so that larger 

substrates also may be degraded by the enzyme. Nevertheless, commercial use of FAOXs in the 
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food industry to reduce the concentration of Amadori compounds in food preparations is not 

common. 

 

PROTEIN DISPERSIBILITY INDEX 

 The degree of heat to which feed ingredients are exposed is correlated with the protein 

dispersibility index (PDI), which is the percent of total protein that disperses in water and has 

been primarily used as an indicator of minimum adequate heat processing of soy products 

(Reinitz, 1984; Marsman et al., 1995; Batal et al., 2000; Iwe et al., 2001; Palić et al., 2012). Soy 

products are routinely toasted to decrease the concentration of heat labile antinutritional factors, 

and the greater the PDI value, the less the degree of destruction of antinutritional factors 

(Reinitz, 1984). Conversely, a low PDI value (e.g., 20%, for soy flour) indicates a more complete 

destruction of antinutritional factors. Increasing time of autoclaving of soyflakes from 0 to 36 

min (121°C) resulted in a linear decrease in PDI values and a concomitant increase in G:F of 

chicks, thus indicating that PDI can be used as an indicator of minimum adequate heat 

processing of soyflakes (Batal et al., 2000). For SBM, PDI values ranging from 15 to 30% 

indicate adequately heat processed SBM. Thus, it is expected that a PDI value for SBM of less 

than 15% may indicate excessive heat processing and, consequently, low protein quality. A study 

conducted to determine the degree of heat treatment in 5 sources of full-fat soybeans analyzed 

for PDI in 6 different laboratories, however, concluded that there was considerable variation in 

this analysis, thus suggesting a low precision of this method (Palić et al., 2012). 
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CHEMICAL EVALUATION OF REACTIVE LYS IN HEAT DAMAGED PROTEINS 

 Most of the chemical methods used to determine the amount of reactive Lys in heat-

damaged proteins are based on specific reactions with the ɛ-amino group of Lys. Among these 

methods are the guanidination method, the furosine method, the difluorodinitrobenzene method, 

and the sodium borohydride method, which are the most common methods used to determine the 

concentration of reactive Lys in heat-damaged proteins (Moughan, 2003). 

Guanidination Method 

 The guanidination procedure, in which feed or food proteins are guanidinated with O-

methylisourea (OMIU), has been used for determination of reactive Lys (Figure 2.3; Fontaine et 

al., 2007; Pahm et al., 2008; Boucher et al., 2009). Guanidination results in a reaction between 

the ɛ-amino group of Lys and OMIU, which yields homoarginine (Rutherfurd and Moughan, 

2007). In this reaction, only Lys that has not undergone Maillard reactions and, thus, has a free 

amino group will react with OMIU to form homoarginine (Pahm et al., 2010). Because 

homoarginine is acid stable, proteins can be hydrolyzed with HCl and the liberated homoarginine 

(using ion-exchange HPLC) is mathematically converted to Lys based on the molecular weight 

of homoarginine and Lys. Therefore, this Lys represents the reactive Lys. To ensure accuracy of 

this method, conversion of Lys to homoarginine needs to be complete. To achieve complete 

conversion of Lys to homoarginine, the guanidination reagent has to be adequately prepared and 

the incubation conditions need to be optimized. Optimum conditions may be achieved by varying 

pH and reaction time. Using an OMIU solution of 0.6 M, the transformation of Lys to 

homoarginine in soy products was shown to be most effective at a pH of 11.5 and reaction time 

of 2 d, but for DDGS, the optimum conditions are at a pH of 12.0 and a reaction time of 2.5 d 

(Fontaine et al., 2007; Pahm et al., 2010). Nyachoti et al. (2002) concluded that for canola meal 
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and barley, conversion of Lys to homoarginine via guanidination is best achieved using a OMIU 

solution of 0.5 M and a 6 d reaction time. The guanidination method may be used to estimate Lys 

damage in damaged proteins (Rutherfurd and Moughan, 2007). In damaged proteins containing 

early Maillard reaction products that may be partly converted back to Lys (under acid 

hydrolysis), total Lys overestimates reactive Lys, but because guanidination occurs prior to acid 

hydrolysis, the reactive Lys is converted to homoarginine before its exposition to acid. The 

reactive Lys is, therefore, represented by the amount of homoarginine in the sample (Pahm et al., 

2008; 2010). 

 The guanidination procedure has been used to determine the concentrations of reactive 

Lys in blood meal, wheat, meat and bone meal, SBM, and cottonseed meal (Rutherfurd et al., 

1997). The concentrations (mg/g) of reactive Lys in blood meal (88.0), wheat (3.1), meat and 

bone meal (34.6), and SBM (32.3) were somewhat similar to the concentrations of total Lys 

(89.1, 3.5, 36.5, and 32.3, respectively). Thus, it was suggested that such similarity may be a 

result of severe heat damage of the ingredients evaluated, which may cause structurally altered 

Lys to become acid stable. Consequently, regeneration of Lys upon acid hydrolysis may be 

impaired. These results indicate that the guanidination procedure may not accurately predict the 

concentration of reactive Lys in over-processed feed ingredients. 

 The concentration of reactive Lys determined by the guanidination procedure also has 

been reported in soy products (Fontaine et al., 2007). Soy products were autoclaved at 135°C in 

3 min intervals from 0 to 30 min. Results indicated that the concentration of reactive Lys in SBM 

(47% CP), SBM (43% CP), and in full fat soybeans was less than the total concentration of Lys. 

It also was observed that increasing time of autoclaving linearly decreased the concentration of 

both the total Lys and the reactive Lys, but the decrease in the concentration of reactive Lys in 



 

16 

 

the 3 soy products was more accentuated, which indicates that the guanidination procedure to 

determine the concentration of reactive Lys is, indeed, more sensitive than standard AA analysis.  

 The main advantage of the guanidination method is that it provides results that are close 

to results given by in vivo tests. However, this is a time consuming method, which may take 

from 2 to 4 d for completion. There is also some variability in the absolute values that are 

obtained using this method (Meade et al., 2005). 

Furosine Method 

The furosine method may be used to determine the extent of early Maillard reactions 

(Figure 2.4; Krause et al., 2003). Formation of furosine is observed when Amadori compounds 

are acid hydrolyzed. Hydrolysis of Amadori compounds yields furosine, regenerated Lys, and 

pyridosine. Under standard AA analysis conditions (6 M HCl), the yield of furosine is assumed 

to be constant (32%; Pahm et al., 2008) although published data show a yield range from 20 to 

42% (Krause et al., 2003; Nursten, 2005). Some of this variation may be due to the type of 

Amadori compounds present in the sample (Krause et al., 2003). The reaction of Lys with 

glucose forms ɛ-N-deoxyfructosyllysine, which under 6 M HCl for 24 h, yields 50% Lys, 20% 

furosine, and 10% pyridosine (Nursten, 2005). Hydrolysis of N-1-deoxy-D-

tagatosylhippuryllysine yields 42% furosine (Krause et al., 2003). It may, therefore, be 

advantageous to determine the types of Amadori compounds present in a specific feed ingredient 

before using an assumed value for the yields of furosine to calculate the amount of reactive Lys.  

If the concentration of furosine is determined, it is possible to calculate the concentration 

of unreactive Lys (Pahm et al., 2008). The concentration of reactive Lys, therefore, can be 

calculated by the difference between total Lys and unreactive Lys, in which total Lys 

corresponds to the sum of concentration of reactive and unreactive Lys. 
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The furosine procedure has been used to determine the concentration of reactive Lys in 

various feed ingredients. An increase in the concentration of furosine in combination with a 

decrease in the concentration of reactive Lys was observed for whey protein that was heat treated 

at temperatures that ranged from 75 to 121°C for 3 different time periods (Desrosiers et al., 

1989). The concentration of unreactive Lys (0.28 g/100 g CP) in light colored wheat DDGS, 

however, was slightly greater than the concentration of unreactive Lys (0.24 g/100 g CP) in dark 

colored wheat DDGS (Cozannet et al., 2010). This is an interesting observation as one should 

expect a greater concentration of unreactive Lys in the dark colored wheat DDGS, considering 

that color may serve as an indicator of the degree of heat damage and Maillard reactions in a 

particular feed ingredient (González-Vega et al., 2011). Furthermore, Cozannet et al. (2011) 

observed that the sum of reactive Lys and unreactive Lys does not add to the total Lys in wheat 

DDGS. According to Cozannet et al. (2011), this observation indicates that determination of 

unreactive Lys by the furosine procedure may underestimate the real concentration of unreactive 

Lys and, therefore, overestimates the concentration of reactive Lys. However, these conclusions 

were based on the untested assumption that hydrolysis of unreactive Lys yields 32% furosine. As 

mentioned, it is possible that this value varies among feed ingredients and research to determine 

the furosine yield from unreactive Lys in different feed ingredients is, therefore, needed. 

The advantage of the furosine procedure is that it may be used to quantify Lys in the 

initial stage of Maillard reactions, but it is assumed that intermediate and late Maillard reaction 

products cannot be degraded to form Lys (Meade et al., 2005).  

Fluorodinitrobenzene Method 

The procedures by which reactive Lys is measured using fluorodinitrobenzene (FDNB) 

can be divided into 2 methods: direct and difference methods (Hurrell and Carpenter, 1974). The 
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direct method consists of the conversion of reactive Lys to dinitrophenyl-Lys by reacting a feed 

ingredient with FDNB (Rutherfurd and Gilani, 2009). Because dinitrophenyl-Lys is a colored 

compound, it can be measured either by spectrophotometry or by reverse-phase HPLC (Pahm, 

2008; Rutherfurd and Gilani, 2009). One disadvantage of this method is that during acid 

hydrolysis, FDNB may react with carbohydrates in the sample and this may lead to color 

deterioration, which may require use of correction factors. Hurrell and Carpenter (1974) used 

methoxycarbonyl chloride to correct for the loss of dinitrophenyl-Lys during acid hydrolysis. If 

the difference method is used (Figure 2.5; Roach et al., 1967), FDNB also is used to react with 

the reactive Lys. After acid hydrolysis, regenerated Lys, which does not react with FDNB, is 

estimated. Thus, reactive Lys is calculated by the difference between total Lys and regenerated 

Lys. Despite its disadvantages, the FDNB method has been used recently to evaluate the effects 

of rendering on protein quality of animal by-products (Pérez-Calvo et al., 2010). Rendered 

products from 2 processing plants were evaluated, and it was reported that the concentration of 

reactive Lys in a rendered product from one plant (processed at 150°C for 45 min) was 3.75% of 

CP, whereas the concentration of reactive Lys in a rendered product from another plant 

(processed at 140 °C for 167 min) was 4.20% of CP. The concentration of reactive Lys in the 

rendered products, regardless of the processing plant in which they were produced, was less than 

the concentration of total Lys. The FDNB procedure also was used to determine the 

concentration of reactive Lys in cake mix, and it was observed that the concentration of reactive 

Lys was reduced by 63.5% as a result of baking and toasting of the cake mix (Hurrel and 

Carpenter, 1977). This result agrees with the results observed by Pérez-Calvo et al. (2010), 

which indicates that the FDNB method is a sensitive indicator of heat damage in protein 

ingredients. Cereal products also have been evaluated by the FDNB method, and results from 
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this experiment revealed that the concentration of total Lys in 20 breakfast cereal products may 

have overestimated the concentration of reactive Lys (Torbatinejad et al., 2005). It was also 

observed that reactive Lys determined by both the FDNB method and the guanidination method 

had a high degree of correlation (0.99), which indicates that both methods may be used to 

determine the concentrations of reactive Lys in breakfast cereals.  

The disadvantage of the direct and difference methods include the long acid hydrolysis 

step, and an additional disadvantage of the direct method is a slight overestimation of blocked 

Lys. It is also possible that samples that contain high concentrations of polysaccharides may 

yield results that are inaccurate (Meade et al., 2005).  

Sodium Borohydride Method 

When Maillard products are treated with sodium borohydride they become acid stable 

(Figure 2.6; Hurrell and Carpenter, 1974) because a covalent bond is formed between sodium 

borohydride and deoxyketosyl-Lys. As a consequence, Lys is not regenerated during acid 

hydrolysis and, therefore, the total Lys that is measured after AA analysis corresponds to the Lys 

that did not react with a reducing sugar. Thus, this method allows for the direct measurement of 

reactive Lys. This method has been used to determine the reactive Lys in SBM fed to growing 

pigs (Pahm, 2008). The concentration of reactive Lys determined by the sodium borohydride 

procedure in SBM was 1.14%, and this value was similar to the values for the concentration of 

reactive Lys determined by the guanidination and furosine methods (1.19 and 1.06%, 

respectively). The concentration of reactive Lys determined by the sodium borohydride 

procedure in a mixture of albumin and glucose was reduced as a result of heat damage and, as 

expected, the values for the concentration of reactive Lys in these mixtures was less than the 

values for the concentration of total Lys in each respective mixture (Hurrell and Carpenter, 
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1974). This observation confirms the sensitivity of the sodium borohydride procedure to evaluate 

heat-damaged proteins. Couch and Thomas (1976) compared the use of the sodium borohydride 

procedure to determine the concentration of reactive Lys in various proteins with the FDNB 

method. No differences in the concentration of reactive Lys in bovine serum albumin were 

observed between the 2 methods. Likewise, the concentration of reactive Lys in glandless 

cottonseed meal determined by the sodium borohydride procedure was not different from the 

concentration of reactive Lys determined by the FDNB method (Couch and Thomas, 1976). 

These observations indicate that there is a good agreement between the 2 methods for 

determination of reactive Lys; however, the sodium borohydride procedure has the advantage 

that it is less time consuming than the FDNB method (Couch and Thomas, 1976). 

The advantage of the sodium borohydride method is that reactive Lys can be determined 

directly in heat-damaged proteins. The main disadvantage is that the reaction with sodium 

borohydride also may reduce the Schiff`s base of Lys, which may be biologically available to 

animals (Meade et al., 2005). However, more research is needed to determine if this results in 

significant inaccuracies in the estimates of reactive Lys. 

 

PRACTICAL CONSEQUENCES OF HEAT DAMAGE 

The concentration and digestibility of AA in feed ingredients and diets may be reduced 

due to heat treatment of feed ingredients (Martinez-Amezcua et al., 2007; Boucher et al., 2009). 

Distillers dried grains with solubles that were oven-dried at 50, 75, or 100˚C had reduced 

concentrations of reactive Lys (Pahm et al., 2008). When autoclaving DDGS for 45 min at 

120˚C, the digestibility of AA was reduced, especially that of Lys (Martinez-Amezcua et al., 

2007), and it was suggested that the reduction in the digestibility of AA other than Lys was a 
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result of the formation of Maillard reaction products that interfered with the absorption of other 

AA. Heat treatment of whey protein in the presence of lactose at temperatures that ranged from 

75 to 121˚C also resulted in a decrease in availability of Lys from 75 to 45% (Desrosiers et al., 

1989). When feeding broiler chicks a diet containing good quality soybean meal (SBM) or heat-

damaged SBM, it was observed that chicks fed the heat-damaged SBM had a decrease in final 

BW, ADG, ADFI, and carcass weight compared with chicks fed the good quality SBM 

(Redshaw, 2010). These negative effects of heat damage on performance, however, were 

partially mitigated by adding crystalline AA to the diets. González-Vega et al. (2011) reported 

that the standardized ileal digestibility (SID) of Lys by pigs was reduced from 93% (non-heated 

SBM) to 89.3 and 84.2% when SBM was autoclaved for 15 and 30 min, respectively, at a 

temperature of 125˚C. In another experiment, Cozannet et al. (2010) observed that the SID of 

Lys in wheat DDGS was highly variable and that the samples with the lowest values for SID 

were darker and contained less Lys expressed as a percentage of CP than the samples with the 

greatest values for SID of Lys, thus indicating that color and the Lys:CP ratio may be used as 

indicators of heat damage in wheat DDGS. As observed by Stein and Shurson (2009) and 

confirmed by Cozannet et al. (2010), when feed ingredients are heat-damaged, the concentration 

of Lys is reduced whereas the concentration of CP remains relatively constant. Therefore, the 

concentration of SID Lys in wheat DDGS fed to pigs may accurately be predicted (R
2
 = 0.86) 

from the Lys:CP ratio (Cozannet et al., 2010). Kim et al. (2012) determined the SID of CP and 

AA in 21 sources of corn DDGS and observed a positive correlation between the SID of Lys and 

the Lys:CP ratio, which further confirms the above theory. The effects of processing conditions 

of fish meal on protein digestibility by mink also were evaluated (Opstvedt et al., 2003). It was 

observed that protein digestibility was less in fish meal sources produced at higher temperatures 
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(> 100°C) than in fish meal sources produced at lower temperatures (< 100°C). Cysteine and Arg 

also have been shown to participate in the Maillard reactions (Ledl and Schleicher, 1990). Heat 

processing may cause oxidation of unsaturated lipids leading to formation of hydroperoxides 

(Meade et al., 2005). Hydroperoxidases may oxidize Cys, thus limiting its utilization by the 

animal. In feed ingredients that have been heat-damaged to a higher degree, pre-melanoidins also 

may react with Cys and Arg (Finot et al., 1990). Cysteine also may go through Strecker 

degradation reactions producing hydrogen sulfide, ammonia, and acetaldehyde (Mottram and 

Mottram, 2002). The products of these reactions serve as intermediates in the formation of 

aromatic compounds, such as thiazoles and disulfides, which are associated with the Maillard 

reactions (Mottram and Mottram, 2002). The participation of Arg in the Maillard reactions 

resulting from heat processing is associated with formation of cross-links with Lys through 

imidazopyridinium bridges (Ledl and Schleicher, 1990). 

Heat damage also may cause losses in vitamins as observed by Ford et al. (1983). Results 

from their research clearly indicated that storage of whole milk powder at 60 and 70°C results in 

a reduction in the concentrations of vitamins B6 and thiamine. At 60°C, however, the reduction is 

much less pronounced than at 70°C. These observations may be because, at higher temperatures, 

the Maillard reactions are favored, which was confirmed by an increase in lactulosyl-lysine 

(which is an intermediate of the Maillard reactions) as the concentrations of vitamins decreased 

(Ford et al., 1983).  

There is, therefore, ample evidence that heat damage to feed ingredients may reduce the 

nutritional value of feed ingredients, specifically the concentration and digestibility of most AA 

and CP. Because many feed ingredients are heated during manufacturing or preparation, it is 
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necessary to evaluate the nutritional quality of these feed ingredients in a rapid and reliable 

manner to accurately use them in feeding programs. 

 

CONCLUSIONS 

Processing of feed ingredients involving heat often will result in Maillard reactions 

involving the condensation between the amino group of Lys or other AA and the carbonyl group 

of reducing sugars. Consequently, Lys becomes unavailable to pigs, thus reducing the 

digestibility of this AA. The Maillard reactions are a series of complex reactions that remain to 

be fully understood, although much is known about the initial and intermediate stages. Some 

enzymes present in fungi and bacteria hydrolyze Amadori reaction products, but little 

information is available regarding the practical use of these enzymes in feedstuffs. The majority 

of the early work conducted to determine the concentration of reactive Lys in feed ingredients 

has used the guanidination or FDNB methods, whereas a relatively large amount of research has 

been conducted using the furosine procedure, and the latter procedure has been suggested to 

determine the concentration of reactive Lys in commonly fed feed ingredients to pigs.
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Figure 2.1. Lysine nomenclature.  
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Figure 2.2. Overview of Maillard reactions, adapted from Purlis (2010).  
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Figure 2.3. Principle for determination of reactive Lys in heat-damaged protein using the 

guanidination method.
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Figure 2.4. Principle for determination of reactive Lys in heat-damaged protein using the 

furosine method.
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Figure 2.5. Principle for determination of reactive Lys in heat-damaged protein using the 

fluorodinitrobenze (FDNB) method.
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Figure 2.6. Principle for determination of reactive Lys in heat-damaged protein using the sodium 

borohydride method.
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CHAPTER 3 

AMINO ACID DIGESTIBILITY OF HEAT DAMAGED DISTILLERS DRIED GRAINS 

WITH SOLUBLES FED TO PIGS 

 

ABSTRACT: The primary objective of this experiment was to determine the effects of heat 

treatment on the standardized ileal digestibility (SID) of AA in corn distillers dried grains with 

solubles (DDGS) fed to growing pigs. The second objective was to develop regression equations 

that may be used to predict the concentration of SID AA in corn DDGS. A source of corn DDGS 

was divided into 4 batches that were either not autoclaved or autoclaved at 130˚C for 10, 20, or 

30 min. Four diets containing DDGS from each of the 4 batches were formulated with DDGS 

being the only source of AA and CP in the diets. A N-free diet also was formulated and used to 

determine the basal endogenous losses of CP and AA in the pigs. Ten growing pigs (initial BW: 

53.5 ± 3.9 kg) were surgically equipped with a T-cannula in the distal ileum and allotted to a 

replicated  5 × 4 Youden square design with 5 diets and 4 periods in each square. The SID of CP 

decreased linearly (P < 0.05) from 77.9% in non-autoclaved DDGS to 72.1, 66.1, and 68.5% in 

the DDGS samples that were autoclaved for 10, 20, or 30 min, respectively. The SID of Lys was 

quadratically reduced (P < 0.05) from 66.8% in the non-autoclaved DDGS to 54.9, 55.3, and 

51.9% in the DDGS autoclaved for 10, 20, or 30 min, respectively. The concentrations of SID 

Arg, His, Leu, Lys, Met, Phe, or Thr may be best predicted by equations that include the 

concentration of acid detergent insoluble N in the model (r
2
 = 0.76, 0.68, 0.67, 0.84, 0.76, 0.73, 

or 0.54, respectively). The concentrations of SID Ile and Val were predicted (r
2
 = 0.58 and 0.54, 

respectively) by the Lys:CP ratio, whereas the concentration of SID Trp was predicted (r
2
 = 0.70) 

by the analyzed concentration of Trp. In conclusion, the SID of AA is decreased as a result of 
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heat damage and the concentration of SID AA in heat-damaged DDGS may be predicted by 

regression equations developed in this experiment.  

Keywords: amino acids, distillers dried grains with solubles, heat damage, regression equations 

 

INTRODUCTION 

 Production of corn distillers dried grains with solubles (DDGS) involves a drying step in 

which the temperature at the dryer inlet may be above 500°C, while the temperature at the dryer 

discharge may be above 100°C (Rosentrater et al., 2012). Application of heat to feed ingredients 

may initiate Maillard reactions, which decrease the concentration and digestibility of Lys and 

other AA (Pahm et al., 2008; Boucher et al., 2009; González-Vega et al., 2011). Lysine is 

particularly susceptible to undergo Maillard reactions because of its free amino group, which 

easily reacts with reducing sugars. If the amino group of an AA reacts with a reducing sugar to 

form early or advanced Maillard reaction products, it becomes unavailable to pigs (Rutherfurd 

and Moughan, 2007; Pahm et al., 2008). During the acid hydrolysis step of AA analysis, 

however, Lys that has reacted with reducing sugars is partially recovered, thus leading to an 

overestimation of available Lys. For this reason, determination of reactive Lys, color, and the 

Lys:CP ratio have been suggested as approaches to estimate the availability of Lys in DDGS 

(Fontaine et al., 2007; Pahm et al., 2008; Cozannet et al., 2010; Kim et al., 2012; Stein, 2012). 

Heat damage and Maillard reactions have been described in different sources of corn DDGS 

(Cromwell et al., 1993; Fastinger and Mahan, 2006; Pahm et al., 2008). However, if different 

sources of DDGS are used, it is difficult to distinguish between effects of heat damage and other 

factors influencing AA digestibility. Gradual increases in heating of a specific source of DDGS 

will result in reduced concentrations of reactive Lys (Fontaine et al., 2007; Pahm et al., 2008). 
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There is, however, no information about effects of increasing time of heating of a specific source 

of DDGS on in vivo AA digestibility, and on the changes in color, reactive Lys, and the Lys:CP 

ratio. Prediction of the concentration of digestible AA and CP from the concentration of reactive 

Lys and the Lys:CP ratio in corn DDGS that was purposefully heat-damaged have not been 

reported. Thus, the primary objective of this experiment was to determine effects of heat 

treatment on the apparent ileal digestibility (AID) and the standardized ileal digestibility (SID) 

of AA in corn DDGS fed to growing pigs. A second objective was to develop regression 

equations that may be used to predict the concentration of SID AA in corn DDGS.    

 

MATERIALS AND METHODS 

 The Institutional Animal Care and Use Committee at the University of Illinois reviewed 

and approved the protocol for this experiment. Pigs used in the experiment were the offspring of 

G-performer boars and F-25 females (Genetiporc, Alexandria, MN). 

Animals, Housing, and Experimental Design 

Ten growing pigs (initial BW: 53.5 ± 3.9 kg) were surgically equipped with a T-cannula 

in the distal ileum (Stein et al., 1998) and allotted to a replicated  5 × 4 Youden square design 

with 5 diets and 4 periods in each square. Pigs were individually housed in a controlled 

environment in pens (1.2 × 1.5 m) equipped with a feeder and a nipple waterer. 

Diets and Feeding 

 Distillers dried grains with solubles was obtained from Poet Nutrition (Sioux Falls, SD) 

and analyzed for CP and AA. The DDGS was divided into 4 batches that were not autoclaved or 

autoclaved at 130˚C for 10, 20, or 30 min (Table 3.1). Four diets containing DDGS from each of 

the 4 batches were formulated, with DDGS being the only source of AA and CP in the diets 
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(Tables 3.2 and 3.3). A N-free diet also was formulated and used to determine the basal 

endogenous losses of CP and AA in the pigs. Diets were supplied with vitamins and minerals to 

meet or exceed the requirement estimates for growing pigs (NRC, 1998). Chromic oxide also 

was included (0.4%) in diets and used as an indigestible marker. 

 The amount of feed provided was calculated as 2.5 times the maintenance requirement of 

energy (i.e., 106 kcal of ME/kg BW
0.75

; NRC, 1998). Pigs were fed once daily at 0800 h.  At the 

beginning of each period, feed allowance was adjusted based on the BW of each pig. Water was 

available at all times. 

Sample Collection 

Each period consisted of 7 d. The initial 5 d were considered an adaptation period to the 

diet.  On d 6 and d 7, ileal digesta were collected for 8 h using standard operating procedures. A 

plastic bag was attached to the cannula barrel and digesta flowing into the bag were collected. 

Bags were replaced whenever they were filled with digesta, or at least once every 30 min and 

immediately frozen at – 20
o
C to prevent bacterial degradation of AA in the digesta.  

Chemical Analyses 

At the conclusion of the experiment, ileal digesta samples were thawed, mixed within animal and 

diet, and a sub-sample was lyophilized, finely ground, and analyzed. A sample of each diet and 

of each batch of DDGS was collected at the time of diet mixing. Diets, ingredients, and ileal 

samples were analyzed for AA by ion-exchange chromatography with postcolumn derivatization 

with ninhydrin. Amino acids were oxidized with performic acid, which was neutralized with Na 

metabisulfite (Llames and Fontaine, 1994; Commission Directive, 1998). Amino acids were 

liberated from the protein by hydrolysis with 6 N HCL for 24 h at 110°C and quantified with the 

internal standard by measuring the absorption of reaction products with ninhydrin at 570 nm. 
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Tryptophan was determined by HPLC with fluorescence detection (extinction 280 nm, emission 

356 nm), after alkaline hydrolysis with barium hydroxide octahydrate for 20 h at 110°C 

(Commission Directive, 2000). Diets, ingredients, and ileal samples also were analyzed for DM 

(method 935.29; AOAC International, 2007), and for CP following the Dumas procedure 

(method 968.06; AOAC International, 2007). Diets and ileal samples were analyzed for 

chromium (method 990.08; AOAC International, 2007). Ingredients were analyzed for ADF 

(Method 973.18; AOAC International, 2007), NDF (Holst, 1973), for lignin (method 973.18 (A-

D); AOAC International, 2007), ash (method 942.05; AOAC International, 2007), total reducing 

sugars (Dubois et al., 1956), and furosine as previously described (Kim et al., 2012). The 

concentration of ADIN in ingredients was determined as the concentration of N in the ADF 

fraction (method 990.03; AOAC International, 2007). Minolta L* (lightness), a* (redness), and 

b* (yellowness) values for each batch of DDGS were determined (8 mm aperture, D65 light 

source, and 0° observer, Minolta Camera Company, Osaka, Japan). 

Calculations and Statistical Analysis  

Values for AID and SID of CP and AA were calculated (Stein et al., 2007). The Lys:CP 

ratio in each DDGS sample was calculated by expressing the concentration of Lys in the sample 

as a percentage of the CP in the sample. The concentration of reactive Lys (%) was calculated by 

the following equation: 

Reactive Lys = total Lys (%) – [furosine (%) ÷ 0.32 × 0.40]; 

Data were analyzed using the MIXED procedure (SAS Institute Inc., Cary, NC). 

Normality of the data and the presence of outliers were evaluated using the UNIVARIATE 

procedure of SAS. One outlier was identified and removed from the data. The model included 

dietary treatment as fixed effect and pig and period as random effects. Linear and quadratic 
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effects of increasing time of heat treatment on the AID and SID of AA were analyzed by 

orthogonal polynomial contrasts. Correlations among predictor variables or between predictor 

variables and dependent variables were determined using the CORR procedure of SAS. The 

coefficients of correlation (rp) were divided into 4 groups: no correlation (P > 0.05), low 

correlation (rp < 0.30), moderate correlation (0.60 > rp ≥ 0.30), or high correlation (rp ≥ 0.60). 

Regression equations to estimate the relationship between the concentration of SID AA and color 

(L*, a*, or b*), or nutrient concentration were developed using the REG procedure in SAS. The 

pig was the experimental unit for all analyses and significance among means was assessed with 

an α level of 0.05. 

 

RESULTS 

Heat treatment did not change the concentrations of DM, ash, or CP in DDGS (Table 

3.1). The concentration of total Lys, however, was 0.82% in non-autoclaved DDGS and 0.65, 

0.73, and 0.68% in the DDGS that was autoclaved for 10, 20, and 30 min, respectively. The 

calculated concentration of reactive Lys was 0.80, 0.64, 0.72, and 0.67% for non-autoclaved 

DDGS and DDGS that was autoclaved for 10, 20, and 30 min, respectively. The Lys:CP ratio 

was 2.94 in non-autoclaved DDGS, whereas the Lys:CP ratio was 2.37, 2.75, and 2.51 in the 

batches that were autoclaved for 10, 20, and 30 min, respectively. The ADF concentration was 

7.96% in non-autoclaved DDGS, whereas for autoclaved DDGS, the concentration of ADF was 

11.05, 9.85, and 10.89% (10, 20, and 30 min, respectively). The concentration of ADIN in non-

autoclaved DDGS was 0.12%, whereas the concentration of ADIN ranged from 0.42 to 0.55% in 

the autoclaved DDGS. Reducing sugar concentration was 0.78 in non-autoclaved DDGS, but 

DDGS that was autoclaved for 10, 20, and 30 min contained 0.60, 0.88, and 0.65% reducing 
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sugars, respectively. Lightness (L*) values were 43.90, 46.92, and 45.01 in the DDGS batches 

that were autoclaved for 10, 20, or 30 min, whereas L* in the non-autoclaved DDGS was 59.70. 

Yellowness (b*) values were 11.25, 14.51, and 12.01 in the batches of DDGS that were 

autoclaved for 10, 20, or 30 min, whereas b* in the non-autoclaved DDGS was 30.22.  

Digestibility of CP and AA 

The AID of CP decreased (linear, P < 0.05) from 64.4% in the non-autoclaved DDGS to 

59.0, 52.2, and 55.7% in the DDGS that was autoclaved for 10, 20, or 30 min, respectively 

(Table 3.4). The AID of Ile, Lys, Met, Phe, and Asp was reduced (quadratic, P < 0.05) with 

increasing time of autoclaving, whereas the AID of all other AA was reduced (linear, P < 0.05) 

with increasing time of autoclaving. Lysine was the AA most affected by increasing time of 

autoclaving. The AID of Lys was reduced (quadratic, P < 0.05) from 61.2 to 48.0, 48.7, and 

44.9% for the non-autoclaved DDGS and the DDGS that was autoclaved for 10, 20, or 30 min, 

respectively. The mean AID of indispensable AA was reduced (linear, P < 0.05) as time of 

autoclaving increased. 

The SID of CP decreased (linear, P < 0.05) from 77.9 % in the non-autoclaved DDGS to 

72.1, 66.1, and 68.5% in the DDGS that was autoclaved for 10, 20, or 30 min, respectively 

(Table 3.5). The SID of Lys was reduced (quadratic, P < 0.05) from 66.8% in the non-autoclaved 

DDGS to 54.9, 55.3, and 51.9% in the DDGS that was autoclaved for 10, 20, or 30 min, 

respectively.  

The SID of Ile, Met, Phe, and Asp also was reduced (quadratic, P < 0.05) with increasing 

time of autoclaving, whereas the SID of all other AA was reduced (linear, P < 0.05) with 

increasing time of autoclaving. The mean SID of indispensable AA also was reduced (linear, P < 

0.05) as time of autoclaving increased.    
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Coefficients of Linear Correlation and Regression Equations 

Color measurements were correlated (rp > 0.70; P < 0.01) with the concentrations of SID 

Arg, His, Ile, Leu, Lys, Met, Thr, and Trp (Table 3.6). The correlation between the concentration 

of SID Lys in corn DDGS and color L*, b*, or a* was 0.91 (P < 0.01).  

The concentrations of SID AA were correlated (rp > 0.70; P < 0.01) with the 

concentration of Lys:CP, except for the concentration of SID Thr, that was moderately correlated 

with the concentration of Lys:CP (Table 3.7). The concentration of SID AA was poorly 

correlated (rp < 0.50) with the concentration of reducing sugars. The concentrations of SID AA 

were negatively correlated with the concentrations of ADF, NDF, lignin, and ADIN (P < 0.01). 

The concentration of SID of each AA also was well correlated (rp > 0.65; P < 0.01) with its 

respective concentration of AA, except for SID Thr, which was moderately correlated (rp < 0.65; 

P < 0.01) with the concentration of Thr.   

The concentrations of digestible AA may be predicted by regression equations presented 

in Table 3.8. Color L* was generally a good predictor (r
2
 > 0.60) of the concentration of SID 

AA, except for the concentration of SID Thr (r
2
 = 0.52). The concentration of SID Arg or SID 

Lys were best predicted by equations that included the concentration of ADIN in the model (r
2
 = 

0.76 and 0.84, respectively). The concentrations of SID AA were predicted (r
2
 > 0.50) by the 

concentrations of their respective AA, but the concentration of SID Thr was poorly (r
2
 = 0.36) 

predicted by the concentration of Thr. 
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DISCUSSION 

Composition of Distillers Dried Grains with Solubles 

The concentrations of DM, ash, and CP were not affected by autoclaving DDGS and this 

observation supports results of González-Vega et al. (2011) who reported that autoclaving 

soybean meal did not change concentrations of DM, ash, or CP. Changes in the concentration of 

Lys observed for autoclaved DDGS in this experiment also agree with results of previous 

experiments in which the concentration of Lys was decreased by heat treatment (Fontaine et al., 

2007; Martinez-Amezcua et al., 2007; Pahm et al., 2008; Boucher et al., 2009). Based on the 

concentration of Lys, these results indicate that autoclaving corn DDGS for 10 min was 

sufficient to cause heat damage, but increasing time of autoclaving to 20 and 30 min did not 

result in further decreases in Lys concentration. In contrast, in a previous experiment, the 

concentration of Lys in corn DDGS autoclaved for 0, 10, 20, or 30 min at 135°C was linearly 

decreased from 0.82 to 0.59% (Fontaine et al., 2007). These differences may be a result of 

differences in sample preparation and autoclaving procedures. Although temperature and time of 

autoclaving were similar between the 2 experiments, in this experiment, DDGS was autoclaved 

on an as-is basis in quantities of 2.5 kg per tray whereas Fontaine et al. (2007) ground DDGS to 

< 3 mm particle size and then autoclaved DDGS in 250 g quantities. The concentrations of 

furosine in DDGS used in this experiment were slightly less than the average concentration of 

furosine (0.02%; CV = 91.4%) measured in 21 sources of DDGS, and these differences may be a 

result of the high degree of variation when determining the concentration of furosine in DDGS 

(Kim et al., 2012). The concentration of reactive Lys in 33 sources of DDGS represents 

approximately 83% of the concentration of total Lys (Pahm et al., 2008), but as a result of the 

relatively low concentrations of furosine determined in DDGS used in this experiment, the 
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calculated concentration of reactive Lys in DDGS used in this experiment represented 

approximately 98% of the concentration of total Lys. Determination of reactive Lys using the 

furosine procedure was initially developed to be used in milk products under the assumption that 

Amadori compounds yield 32% furosine, 40% regenerated Lys, and 28% pyridosine 

(Erbersdobler and Somoza, 2007). These same assumptions have been used when determining 

the concentration of reactive Lys in DDGS (Pahm et al., 2008; Kim et al., 2012), but the 

differences observed among the present data and the data from Pahm et al. (2008) and Kim et al. 

(2012) indicate that these assumptions may not be true for DDGS. The reason for the reduced 

Lys:CP ratio in the autoclaved DDGS is that only the concentration of Lys, but not the 

concentration of CP, is reduced when heat damage occurs (Stein et al., 2009; Kim et al., 2012). 

The Lys:CP ratio also was reduced in soybean meal that was heat-damaged compared with 

unheated soybean meal (González-Vega et al., 2011). The concentration of Lys in the non-

autoclaved DDGS was slightly greater than the average concentration of Lys (0.76%) in 39 

sources of DDGS (Stein and Shurson, 2009). Likewise, the Lys:CP ratio was slightly greater in 

the unheated DDGS compared with the average value (2.77) reported by Stein and Shurson 

(2009). However, the concentrations of Lys and the Lys:CP ratio in autoclaved DDGS are close 

to the average values reported by Stein and Shurson (2009) for corn DDGS, which indicates that 

the heat damage caused by autoclaving simulated the varying degrees of heat damage caused by 

processing of DDGS in commercial production facilities.  

The concentration of ADIN has been used as a predictor of heat damage in plant proteins 

and our results agree with these observations (Schroeder et al., 1996). The changes observed 

between the concentrations of reducing sugars in the unheated DDGS and the 3 autoclaved 

DDGS were expected because, in the initial steps of the Maillard reactions, reducing sugars react 
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with the ε-amino group of Lys to form fructoselysine and maltuloselysine, respectively 

(Erbersdobler and Hupe, 1991). Lightness (L*) of soybean meal subjected to heat damage is 

reduced (González-Vega et al., 2011). This may be attributed to the formation of advanced 

Maillard reaction products such as premelanoidins and melanoidins which, in some cases are 

characterized by a noticeable browning of the ingredients (Faist and Erbersdobler, 2001). 

Because Maillard reactions are associated with formation of brown color and reduced AA 

concentrations, it is expected that darker DDGS contains less AA than lighter DDGS. Among 10 

different sources of wheat DDGS produced in European ethanol plants, 3 darker sources with L* 

< 50 had a reduced Lys:CP ratio compared with 7 lighter sources with L* > 50 (Cozannet et al., 

2010). In corn DDGS, the concentration of Lys and the Lys:CP ratio is also less in darker DDGS 

than in lighter DDGS (Batal and Dale, 2006; Fastinger and Mahan, 2006).  

Digestibility of CP and AA 

Values for the AID of CP and AA in the unheated DDGS are in agreement with results 

from previous experiments (Fastinger and Mahan, 2006; Stein and Shurson, 2009). Results of 

previous experiments also indicated that the digestibility of Lys was more reduced by heat 

damage than the digestibility of other AA (Martinez-Amezcua et al., 2007; González-Vega et al., 

2011). Values for the SID of CP and AA in the non-autoclaved DDGS were within the range of 

values for the SID of CP and AA in corn DDGS observed in previous experiments (Stein and 

Shurson, 2009). This observation is supported by the value for the Lys:CP ratio (2.94) 

determined for corn DDGS in this experiment, which also was similar to the average value (2.77) 

reported by Stein and Shurson (2009). For the autoclaved DDGS, however, values for the SID of 

CP and AA were less than those reported by Stein and Shurson (2009). Reductions observed for 

the SID of Lys with increasing time of autoclaving and the results from reducing sugars and the 



 

49 

 

Lys concentrations in autoclaved DDGS indicate that the conditions created by autoclaving of 

DDGS (i.e., heat, moisture, and pressure) were favorable to initiation of Maillard reactions, 

which renders Lys unavailable to the animals and, therefore, reduces Lys digestibility (Nursten, 

2005; González-Vega et al., 2011). It appears, however, that the degree of heat damage among 

autoclaved DDGS (i.e., 10, 20, or 30 min) was not different and this observation is supported by 

the fact that the SID of Lys among these ingredients was not different. Reductions in the 

digestibility of AA other than Lys have been attributed to the formation of cross-linkages 

between protein chains (Tuohy et al., 2006). When these cross-links are formed, digestive 

enzymes such as trypsin have reduced access to the proteins, thus the ability of trypsin to 

hydrolyze peptide bonds is reduced. Exposure to excessive heat and pressure may also lead to 

AA racemization, thus converting L-AA to D-AA (Zagon et al., 1994). Proteolytic enzymes are 

unable to hydrolyze peptide bonds connecting D-AA and L-AA. Consequently, the digestibility 

is reduced not only for the D-AA, but also for the L-AA (Finot, 2005). 

Coefficients of Linear Correlation and Regression Equations 

 Results of this experiment concur with results of previous experiments in which the 

concentration of SID Lys in different sources of corn DDGS or wheat DDGS was correlated with 

color L* (Batal and Dale, 2006; Fastinger and Mahan, 2006; Cozannet et al., 2010; 2011). These 

observations indicate that the concentration of SID Lys in DDGS may be predicted from values 

for color L* within the same source of DDGS (as for this experiment). The use of color as a 

predictor of SID AA in DDGS, however, is debatable (Shurson, 2011), because changes in the 

color of DDGS may not only occur as a result of heat damage (Ganesan et al., 2008; Liu, 2009; 

Kingsly et al., 2010). Condensed distillers solubles (CDS) are added to wet distillers grains in the 

production of DDGS, and because CDS are brown in color, the amount added to wet distillers 
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grain may affect the color of DDGS (Ganesan et al., 2008). Therefore, as CDS level is reduced 

the value for L* in DDGS increases (Kingsly et al., 2010). The CDS fraction of DDGS also 

contains reducing sugars, which may result in Maillard reactions and, therefore, increase 

browning of DDGS (Kingsly et al., 2010). Color of DDGS also is affected by particle size, and 

smaller particle size is associated with DDGS that is lighter, less red, and more yellow (Liu, 

2009). Therefore, the regression equations using color to predict the concentration of SID AA in 

DDGS that were developed in this experiment should be used only for DDGS produced within a 

specific ethanol plant where variations in drying temperatures may exist, but the levels of CDS 

and particle size are constant. For feed manufacturers who use different sources of DDGS, 

however, the use of equations that include color is of limited value because changes in color may 

be a result of characteristics of DDGS not related to heat damage. 

   The relatively good correlations between the concentration of SID AA and the 

concentration of each AA in DDGS agree with results from Kim et al. (2012). Consequently, 

analyzed concentrations of most AA in DDGS may be used to predict the concentration of SID 

AA in DDGS although that is not the case for Thr. It has been observed that heat damage of feed 

ingredients is associated with an increase in ADF, lignin, and ADIN, which results in a decrease 

in N digestibility in cattle and sheep (Broesder et al., 1992). The concentrations of ADF and 

ADIN is increased in dark-colored DDGS, which suggests a greater degree of heat damage in 

such ingredients (Cromwell et al., 2003), and likely a lower digestibility of AA. The negative 

correlation between the concentration of SID AA and the concentrations of ADF, lignin, or 

ADIN observed in this experiment support the latter observations.  

 The concentration of SID Lys can accurately be predicted from the concentration of Lys. 

This observation agrees with Kim et al. (2012) who also concluded that the concentration of SID 
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Lys may be predicted from the concentrations of Lys. Prediction of the concentration of SID Lys 

in this study was slightly improved if the concentration of ADIN was used in the model. This 

indicates that the concentration of analyzed ADIN may be used to predict the concentration of 

SID Lys in DDGS. 

 In conclusion, results of this experiment confirmed that the concentration and 

digestibility of AA in DDGS is reduced as a result of heat damage. The concentrations of Lys 

and ADIN are good predictors of the concentration of most AA in heat-damaged DDGS, and the 

concentration of SID AA may accurately be predicted from regression equations developed in 

this experiment.     
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TABLES 

 

Table 3.1. Chemical composition of distillers dried grains with solubles 

  Distillers dried grains with solubles 

    Autoclaved at 130°C 

Item  Non-autoclaved  10 min  20 min  30 min 

DM, %  93.21  92.43  90.91  94.47 

Ash, %  5.25  5.08  5.17  5.06 

CP, %  27.91  27.44  26.51  27.05 

Lys:CP ratio
1
   2.94  2.37  2.75  2.51 

Furosine, %  0.015  0.009  0.006  0.008 

Reactive Lys
2
  0.80  0.64  0.72  0.67 

ADF, %  7.96  11.05  9.85  10.89 

NDF, %  31.29  33.23  33.32  32.40 

ADL, %  0.88  2.06  1.73  2.57 

ADIN,
3
 %  0.12  0.53  0.42  0.55 

Reducing sugars, %  0.78  0.60  0.88  0.65 

L*
4
  59.70  43.90  46.92  45.01 

a*
4
  11.79  10.31  10.77  10.27 

b*
4
  30.22  11.25  14.51  12.01 

Indispensable AA, %         

  Arg  1.24  1.10  1.19  1.10 

  His  0.71  0.67  0.70  0.67 
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Table 3.1. (Cont.)         

  Ile  0.97  0.91  0.96  0.93 

  Leu  2.92  2.82  2.89  2.78 

  Lys  0.82  0.65  0.73  0.68 

  Met  0.53  0.49  0.52  0.50 

  Phe  1.24  1.17  1.21  1.17 

  Thr  1.02  0.98  1.01  0.98 

  Trp  0.22  0.20  0.20  0.20 

  Val  1.26  1.19  1.26  1.23 

 All indispensable  10.93  10.18  10.67  10.24 

Dispensable AA, %         

  Ala  1.90  1.83  1.87  1.82 

  Asp  1.75  1.66  1.73  1.66 

  Cys  0.55  0.50  0.52  0.50 

  Glu  4.43  4.31  4.41  4.26 

  Gly  1.08  1.04  1.09  1.04 

  Pro  2.21  2.06  2.13  2.04 

  Ser  1.31  1.26  1.29  1.23 

  All dispensable  13.23  12.66  13.04  12.55 

 
1
Calculated by expressing the concentration of Lys in each ingredient as a percentage of 

the concentration of CP (Stein et al., 2009). 

 
2
Reactive Lys (%) = [Lys (%) – (Furosine (%) ÷ 0.32 × 0.40)]; Pahm et al., 2008. 

 
3
ADIN = acid detergent insoluble nitrogen. 

 
4
L* = lightness; a* = redness; b* = yellowness. 
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Table 3.2. Ingredient composition of experimental diets, as-fed basis 

  Distillers dried grains with solubles diets   

    Autoclaved at 130°C   

Ingredient, %  Non-

autoclaved 

 10 min  20 min  30 min  N-free diet 

DDGS
1
  60.00  60.00  60.00  60.00  - 

Cornstarch  27.00  27.00  27.00  27.00  66.40 

Sucrose  10.00  10.00  10.00  10.00  20.00 

Solka floc
2 

 -  -  -  -  5.00 

Soybean oil  -  -  -  -  4.00 

Ground limestone  1.20  1.20  1.20  1.20  - 

Dicalcium phosphate  0.60  0.60  0.60  0.60  3.00 

Sodium chloride  0.40  0.40  0.40  0.40  0.40 

Magnesium oxide  -  -  -  -  0.10 

Potassium carbonate  -  -  -  -  0.40 

Chromic oxide  0.40  0.40  0.40  0.40  0.40 

Vitamin-mineral premix
3 

 0.40  0.40  0.40  0.40  0.30 

 
1
DDGS = distillers dried grains with solubles. 

 
2
Fiber Sales and Development Corp., Urbana, OH. 

3
Provided the following per kilogram of complete diet: Vitamin A as retinyl acetate, 

11,128 IU; vitamin D3 as cholecalciferol, 2,204 IU; vitamin E as DL-alphatocopheryl acetate, 66 

IU; vitamin K as menadione nicotinamide bisulfite, 1.42 mg; thiamin as thiamine mononitrate, 

0.24 mg; riboflavin, 6.58 mg;  pyridoxine as pyridoxine hydrochloride, 0.24 mg; vitamin B12, 

0.03 mg; D-pantothenic acid as D-calcium pantothenate, 23.5 mg; niacin as nicotinamide, 1.0 

mg, and nicotinic acid, 43.0 mg; folic acid, 1.58 mg; biotin, 0.44 mg; Cu, 10 mg as copper 

sulfate; Fe, 125 mg as iron sulfate; I, 1.26 mg as potassium iodate; Mn, 60 mg as manganese 

sulfate; Se, 0.3 mg as sodium selenite; and Zn, 100  mg as zinc oxide. 
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Table 3.3. Analyzed composition of experimental diets, as-fed basis 

  Distillers dried grains with solubles  

    Autoclaved at 130°C  

Item  Non-autoclaved  10 min  20 min  30 min N-free diet 

DM, %  92.42  93.18  92.59  92.32 92.53 

CP, %  14.96  15.59  14.62  15.76 0.28 

Indispensable AA, %          

  Arg  0.73  0.68  0.70  0.67 - 

  His  0.42  0.41  0.42  0.41 - 

  Ile  0.56  0.57  0.58  0.55 - 

  Leu  1.69  1.75  1.76  1.72 - 

  Lys  0.51  0.42  0.44  0.41 - 

  Met  0.31  0.29  0.29  0.28 - 

  Phe  0.71  0.73  0.74  0.72 - 

  Thr  0.61  0.61  0.62  0.60 - 

  Trp  0.13  0.12  0.12  0.12 - 

  Val  0.74  0.75  0.76  0.73 - 

 All indispensable  6.41  6.33  6.43  6.21 - 

Dispensable AA, %          

  Ala  1.11  1.14  1.15  0.12 - 

  Asp  1.05  1.04  1.06  1.03 - 

  Cys  0.33  0.32  0.31  0.31 - 

  Glu  2.60  2.69  2.70  2.65 - 
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Table 3.3. (Cont.)          

  Gly  0.64  0.65  0.66  0.64 - 

  Pro  1.30  1.24  1.27  1.23 - 

  Ser  0.78  0.79  0.79  0.78 - 

  All dispensable  7.81  7.87  7.94  6.76 - 
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Table 3.4. Apparent ileal digestibility of CP and AA in distillers dried grains with solubles subjected to increasing levels of heat 

treatment by weanling pigs
1 

  Distillers dried grains with solubles     

    Autoclaved at 130° C  SEM  P-value
2 

Item  Non-autoclaved  10 min  20 min  30 min    Linear Quadratic 

CP, %  64.4
 

 59.0
 

 52.2
 

 55.7
 

 2.0  < 0.01 0.12 

Indispensable AA, %              

  Arg  79.3
 

 71.9
 

 72.0
 

 69.1
 

 1.7  < 0.01 0.06 

  His  73.9
 

 66.8
 

 65.9
 

 66.0
 

 1.3  < 0.01 0.23 

  Ile  72.3
 

 66.2
 

 66.6
 

 63.1
 

 1.4  < 0.01 0.02 

  Leu  84.0
 

 80.7
 

 80.4
 

 79.1
 

 0.8  < 0.01 0.12 

  Lys  61.2
 

 48.0
 

 48.7
 

 44.9
 

 1.9  < 0.01 0.02 

  Met  83.6
 

 77.7
 

 77.8
 

 75.7
 

 0.9  < 0.01 < 0.01 

  Phe  79.8  75.1
 

 75.4
 

 73.6
 

 1.0  < 0.01 0.04 

  Thr  60.2
 

 53.9
 

 53.2
 

 51.2
 

 1.6  < 0.01 0.27 

  Trp  55.1  43.7  42.8  41.5  2.0  < 0.01 0.15 
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Table 3.4. (Cont.)              

  Val  71.9
 

 65.7
 

 65.5
 

 62.6
 

 1.4  < 0.01 0.08 

  Mean  75.6
 

 70.0
 

 69.9
 

 67.8
 

 1.1  < 0.01 0.07 

Dispensable AA, %              

  Ala  77.5
 

 73.3
 

 71.4
 

 71.0
 

 1.3  < 0.01 0.86 

  Asp  65.5
 

 55.2
 

 55.4
 

 53.3
 

 1.5  < 0.01 0.02 

  Cys  71.9
 

 64.7
 

 60.5
 

 62.7
 

 1.5  < 0.01 0.54 

  Glu  81.7
 

 76.7
 

 75.6
 

 75.3
 

 0.9  < 0.01 0.34 

  Gly  43.4
 

 36.3
 

 29.0
 

 31.7
 

 4.6  < 0.01 0.47 

  Ser  69.6  65.1
 

 64.1
 

 63.2
 

 1.3  < 0.01 0.47 

  Mean  68.3
 

 61.8
 

 59.2
 

 59.5
 

 1.5  < 0.01 0.85 

 
1
Data are means of 8 observations, except for the distillers dried grains with solubles diet that was autoclaved for 10 min (n = 

7). 

 
2
Linear and quadratic effects of time of autoclaving.  
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Table 3.5. Standardized ileal digestibility of CP and AA in distillers dried grains with solubles subjected to increasing levels of heat 

treatment by weanling pigs
1 

  Distillers dried grains with solubles     

    Autoclaved at 130° C  SEM  P-value
2
 

Item  Non-autoclaved  10 min  20 min  30 min    Linear Quadratic 

CP, %  77.9
 

 72.1
 

 66.1
 

 68.5
 

 2.0  < 0.01 0.25 

Indispensable AA, %              

  Arg  87.9
 

 81.3
 

 81.0
 

 78.5
 

 1.7  < 0.01 0.11 

  His  78.1
 

 71.2
 

 70.1
 

 70.3
 

 1.3  < 0.01 0.27 

  Ile  77.3
 

 71.1
 

 71.4
 

 68.2
 

 1.4  < 0.01 0.03 

  Leu  86.7
 

 83.3
 

 83.1
 

 81.8
 

 0.8  < 0.01 0.12 

  Lys  66.8
 

 54.9
 

 55.3
 

 51.9
 

 1.9  < 0.01 0.04 

  Met  86.1
 

 80.4
 

 80.5
 

 78.5
 

 0.9  < 0.01 < 0.01 

  Phe  83.7  79.0
 

 79.2
 

 77.5
 

 1.0  < 0.01 0.05 

  Thr  70.2
 

 64.0
 

 63.1
 

 61.3
 

 1.6  < 0.01 0.33 

  Trp  65.9  55.5  54.5  53.2  2.0  < 0.01 0.20 
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Table 3.5. (Cont.)              

  Val  77.2
 

 71.0
 

 70.7
 

 67.9
 

 1.4  < 0.01 0.09 

  Mean  80.7
 

 75.2
 

 74.9
 

 73.1
 

 1.1  < 0.01 0.09 

Dispensable AA, %              

  Ala  83.3
 

 79.1
 

 77.1
 

 76.8
 

 1.3  < 0.01 0.89 

  Asp  72.3
 

 62.1
 

 62.1
 

 60.2
 

 1.5  < 0.01 0.03 

  Cys  77.7
 

 70.8
 

 66.8
 

 68.9
 

 1.5  < 0.01 0.55 

  Glu  85.2
 

 80.1
 

 79.0
 

 78.7
 

 0.9  < 0.01 0.33 

  Gly  73.4
 

 66.0
 

 58.1
 

 61.7
 

 4.6  < 0.01 0.39 

  Ser  76.9  72.4
 

 71.3
 

 70.5
 

 1.3  < 0.01 0.48 

  Mean  78.1
 

 71.7
 

 69.0
 

 69.4
 

 1.5  < 0.01 0.91 

1
Data are means of 8 observations, except for the distillers dried grains with solubles diet that was autoclaved for 10 min (n = 

7); Values for standardized ileal digestibility were calculated by correcting apparent ileal digestibility values for basal endogenous 

losses (g/kg of DMI), which were determined by feeding pigs a N-free diet: CP, 21.93; Arg, 0.68; His, 0.19; Ile, 0.30; Leu, 0.50; Lys, 

0.31; Met, 0.08; Phe, 0.30; Thr, 0.66; Trp, 0.15; Val, 0.43; Ala, 0.71; Asp, 0.77; Cys, 0.21; Glu, 0.98; Gly, 2.08; and Ser, 0.62.  
2
Linear and quadratic effects of time of autoclaving.
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Table 3.6. Coefficients of linear correlation between color of distillers dried grains with solubles 

and the concentration (%) of standardized ileal digestible (SID) AA 

 Color
1
 

Item L* b* a* 

SID Arg 0.84 0.84 0.87 

SID His 0.83 0.83 0.82 

SID Ile 0.79 0.79 0.81 

SID Leu 0.79 0.79 0.82 

SID Lys 0.91 0.91 0.91 

SID Met 0.88 0.88 0.87 

SID Phe 0.84 0.84 0.86 

SID Thr 0.72 0.72 0.72 

SID Trp 0.84 0.84 0.83 

SID Val 0.77 0.77 0.79 

 
1
L* = lightness; a* = redness; b* = yellowness; all correlations are significant (P < 0.01).
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Table 3.7. Coefficients of linear correlation between nutrient composition of distillers dried grains with solubles and the concentration 

(%) of standardized ileal digestible (SID) CP and AA
 

 Nutrient composition 

 Lys:CP Reducing sugars ADF NDF Lignin ADIN
1
 Arg His Ile Leu Lys Met Phe Thr Trp Val 

Item                 

SID Arg 0.80
*
 0.50

*
 -0.86

*
 -0.60

*
 -0.62

*
 -0.87

*
 0.84

*
 - - - - - - - - - 

SID His 0.72
*
 0.06

ns
 -0.81

*
 -0.69

*
 -0.48

*
 -0.82

*
 - 0.69

*
 - - - - - - - - 

SID Ile 0.76
*
 0.49

*
 -0.81

*
 -0.58

*
 -0.55

*
 -0.81

*
 - - 0.70

*
 - - - - - - - 

SID Leu 0.72
*
 0.45

**
 -0.81

*
 -0.54

*
 -0.65

*
 -0.82

*
 - - - 0.78

*
 - - - - - - 

SID Lys 0.83
*
 0.45

**
 -0.91

*
 -0.74

*
 -0.54

*
 -0.92

*
 - - - - 0.89

*
 - - - - - 

SID Met 0.78
*
 0.40

**
 -0.86

*
 -0.73

*
 -0.48

*
 -0.87

*
 - - - - - 0.75

*
 - - - - 

SID Phe 0.78
*
 0.47

*
 -0.85

*
 -0.63

*
 -0.56

*
 -0.86

*
 - - - - - - 0.83

*
 - - - 

SID Thr 0.58
*
 0.25

ns
 -0.70

*
 -0.55

*
 -0.56

*
 -0.73

*
 - - - - - - - 0.60

*
 - - 

SID Trp 0.71
*
 0.34

ns
 -0.81

*
 -0.70

*
 -0.52

*
 -0.83

*
 - - - - - - - - 0.84

*
 - 

SID Val 0.73
*
 0.45

**
 -0.78

*
 -0.59

*
 -0.50

*
 -0.78

*
 - - - - - - - - - 0.55

*
 

 
1
ADIN = acid detergent insoluble nitrogen. 

*
 = P < 0.01; 

**
 = P < 0.05; ns = not significant.
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Table 3.8. Linear regression to predict the concentration (%) of standardized ileal digestible (SID) CP and AA from color, and 

nutrient concentrations (%) in corn distillers dried grains with solubles (DDGS) fed to pigs
1
 

  Intercept  Independent variable   

Dependent variable  Estimate SE P-value  Variable Estimate SE P-value  r
2
 

SID Arg  0.30 0.08 < 0.01  Color L*
2
 0.013 0.001 < 0.01  0.71 

  -0.66 0.20 < 0.01  Arg 1.398 0.171 < 0.01  0.70 

  1.16 0.02 < 0.01  ADIN
2
 -0.506 0.053 < 0.01  0.76 

SID His  0.23 0.03 < 0.01  Color L* 0.006 0.0006 < 0.01  0.69 

  -0.62 0.22 < 0.01  His 1.639 0.322 < 0.01  0.47 

  0.58 0.01 < 0.01  ADIN -0.203 0.025 < 0.01  0.68 

SID Ile  0.34 0.05 < 0.01  Color L* 0.007 0.001 < 0.01  0.62 

    -0.92 0.30 < 0.01  Ile 1.706 0.320 < 0.01  0.50 

  0.15 0.08 0.08  Lys:CP 0.200 0.031 < 0.01  0.58 

SID Leu  1.69 0.10 < 0.01  Color L* 0.014 0.002 < 0.01  0.62 

  -2.23 0.69 < 0.01  Leu 1.623 0.243 < 0.01  0.61 

  2.61 0.03 < 0.01  ADIN -0.554 0.071 < 0.01  0.67 
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Table 3.8. (Cont.)            

SID Lys  -0.20 0.05 < 0.01  Color L* 0.013 0.001 < 0.01  0.83 

  -0.46 0.08 < 0.01  Lys 1.214 0.115 < 0.01  0.79 

  0.60 0.02 < 0.01  ADIN -0.463 0.037 < 0.01  0.84 

SID Met  0.18 0.02 < 0.01  Color L* 0.004 0.0004 < 0.01  0.77 

  -0.39 0.13 < 0.01  Met 1.53 0.252 < 0.01  0.56 

  0.46 0.01 < 0.01  ADIN -0.161 0.017 < 0.01  0.76 

SID Phe  0.56 0.05 < 0.01  Color L* 0.008 0.0009 < 0.01  0.70 

  -1.11 0.26 < 0.01  Phe 1.726 0.217 < 0.01  0.68 

  1.08 0.01 < 0.01  ADIN -0.304 0.034 < 0.01  0.73 

SID Thr  0.32 0.06 < 0.01  Color L* 0.006 0.001 < 0.01  0.52 

  -1.31 0.50 < 0.05  Thr 1.967 0.499 < 0.01  0.36 

  0.75 0.02 < 0.01  ADIN -0.247 0.043 < 0.01  0.54 

SID Trp  0.002 0.01 0.91  Color L* 0.002 0.0002 < 0.01  0.70 

  -0.24 0.04 < 0.01  Trp 1.767 0.219 < 0.01  0.70 

  -0.04 0.03 0.19  Lys:CP 0.061 0.011 < 0.01  0.51 
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Table 3.8. (Cont.)            

SID Val  0.46 0.07 < 0.01  Color L* 0.009 0.001 < 0.01  0.59 

  -0.88 0.50 0.08  Val 1.438 0.400 < 0.01  0.31 

  0.24 0.11 0.04  Lys:CP 0.246 0.042 < 0.01  0.54 

 
1
 n = 31 observations; for all models P < 0.01. 

 
2
 Color L* = lightness; ADIN = acid detergent insoluble nitrogen.
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 CHAPTER 4 

EFFECTS OF HEAT TREATMENT ON THE APPARENT AND STANDARDIZED 

ILEAL DIGESTIBILITY OF AMINO ACIDS IN CANOLA MEAL FED TO GROWING 

PIGS 

 

ABSTRACT: An experiment was conducted to determine the effects of heat damage on the 

apparent ileal digestibility (AID) and the standardized ileal digestibility (SID) of CP and AA in 

canola meal fed to growing pigs. The second objective was to develop regression equations to 

predict the concentration of SID AA from the nutrient composition of canola meal. Ten growing 

pigs (initial BW: 26.5 ± 0.7 kg) were surgically equipped with a T-cannula in the distal ileum 

and allotted to a replicated  5 × 5 Latin square design with 5 diets and 5 periods in each square. 

One batch of canola meal was divided into 4 batches that were either not autoclaved or 

autoclaved at 130˚C for 20, 30, or 45 min. Four diets were formulated with canola meal being the 

only source of AA and CP. Each diet contained 1 of the 4 batches of canola meal. A N-free diet 

also was formulated and used to determine the basal endogenous losses of CP and AA in the 

pigs. The AID of CP and all AA was reduced (quadratic, P < 0.01) as a result of increasing time 

of autoclaving. Autoclaving of canola meal also reduced (quadratic, P < 0.01) the SID of CP and 

all AA. The concentration (%) of SID Lys in canola meal may be predicted by regression 

equations using the concentration (%) of reducing sugars (r
2
 = 0.96). Likewise, the 

concentrations of SID AA for most AA may be predicted from the nutrient composition of 

canola meal. In conclusion, heat damage reduces both the concentration and the digestibility of 

AA in canola meal. Regression equations developed in this experiment may be used to predict 

the concentration of SID AA in canola meal.  
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Key words: amino acids, canola meal, digestibility, heat damage, pigs 

 

INTRODUCTION 

 Canola meal, the product remaining after oil has been solvent extracted from canola, is 

the second most used protein source for feeding of poultry and livestock (Canola Council of 

Canada, 2009). The final step in producing canola meal involves desolventizing and toasting of 

the meal, which may last between 35 and 50 min and requires steam (i.e., moisture) and 

temperatures that vary from 95 to 115°C (Canola Council of Canada, 2009; Unger, 2011). 

Consequently, differences in processing of canola meal may result in variations in the nutritional 

composition of canola meal among different processing plants because Maillard reactions may 

occur as a result of the combination of heat and moisture in the presence of reducing sugars and 

AA (Nursten, 2005). These reactions result in a decrease in the concentration and digestibility of 

AA, and Lys is the AA most affected by heat damage (Carvalho et al., 2009; González-Vega et 

al., 2011; Newkirk, 2011). Conventional AA analysis may overestimate the concentration of Lys 

available for the pig in heat-damaged feed ingredients because some of the Lys that participates 

in the Maillard reactions is recovered during the acid hydrolysis step, although this Lys is not 

released in vivo (Williams et al., 2006). The use of reactive Lys determined by the furosine 

procedure has been suggested as an approach to evaluate the nutritional quality of corn DDGS 

(Pahm et al., 2008; Kim et al., 2012), but this hypothesis has not been tested in canola meal. 

Apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of CP and AA in 

canola meal have been determined (Stein et al., 2005; Woyengo et al., 2010; Trindade Neto et 

al., 2012), but effects of heat damage on the AID and SID of CP and AA in canola meal fed to 

growing pigs have not been determined. We hypothesized that heat damage decreases the 
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concentration and digestibility of AA in canola meal and that the concentration of SID AA in 

heat-damaged canola meal may be predicted from regression equations developed using the 

nutrient composition of heat-damaged canola meal. Therefore, the main objective of this 

experiment was to determine the effects of heat damage on the AID and SID of CP and AA in 

canola meal fed to growing pigs. The second objective was to develop regression equations to 

predict the concentration of SID AA in canola meal. 

 

MATERIALS AND METHODS 

The protocol for this experiment was reviewed and approved by The Institutional Animal 

Care and Use Committee at the University of Illinois. Pigs used in the experiment were the 

offspring of G-performer boars and F-25 females (Genetiporc, Alexandria, MN). 

Animals, Housing, and Experimental Design 

Ten growing pigs (initial BW: 26.5 ± 0.7 kg) were surgically equipped with a T-cannula 

in the distal ileum (Stein et al., 1998) and allotted to a replicated  5 × 5 Latin square design with 

5 diets and 5 periods in each square. Pigs were individually housed in a controlled environment 

in pens (1.2 × 1.5 m) that were equipped with a feeder and a nipple waterer. 

Diets and Feeding 

 Canola meal was obtained from the University of Illinois Feed Mill (Champaign, IL) and 

divided into 4 batches that were either not autoclaved or autoclaved at 130˚C for 20, 30, or 45 

min (Table 4.1). Four diets were formulated with canola meal being the only source of AA and 

CP in each diet (Tables 4.2 and 4.3). Each diet contained 1 of the 4 batches of canola meal. A N-

free diet also was formulated and used to determine the basal endogenous losses of CP and AA 

in the pigs. Diets were supplied with vitamins and minerals to meet or exceed the requirement 
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estimates for growing pigs (NRC, 1998). Chromic oxide was included (0.4%) in the diets and 

used as an indigestible marker. 

  The amount of feed provided daily was calculated as 2.5 times the maintenance 

requirement of energy (i.e., 106 kcal of ME/kg BW
0.75

; NRC, 1998). Pigs were fed once daily at 

0800 h.  At the beginning of each period, feed allowance was adjusted based on the BW of each 

pig. Water was available at all times. 

Sample Collection 

Each period lasted 7 d. The initial 5 d were considered an adaptation period to the diet.  

On d 6 and d 7, ileal digesta were collected for 8 h. A plastic bag was attached to the cannula 

barrel and digesta flowing into the bag were collected. Bags were replaced whenever they were 

filled with digesta, or at least once every 30 min, and immediately frozen at – 20
o
C to prevent 

bacterial degradation of AA in the digesta.  

Chemical Analyses 

At the conclusion of the experiment, ileal digesta samples were thawed, mixed within 

animal and diet, and a sub-sample was lyophilized, finely ground, and analyzed. A sample of 

each diet and of each batch of canola meal was collected at the time of diet mixing. Diets, 

ingredients, and ileal samples were analyzed for AA by ion-exchange chromatography with 

postcolumn derivatization with ninhydrin. Cysteine and Met were oxidized with performic acid, 

which was neutralized with Na metabisulfite (Llames and Fontaine, 1994; Commission 

Directive, 1998). Amino acids were liberated from the protein by hydrolysis with 6 N HCL for 

24 h at 110°C and quantified with the internal standard by measuring the absorption of reaction 

products with ninhydrin at 570 nm. Tryptophan was determined by HPLC with fluorescence 

detection (extinction 280 nm, emission 356 nm), after alkaline hydrolysis with barium hydroxide 
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octahydrate for 20 h at 110°C (Commission Directive, 2000). Diets, ingredients, and ileal 

samples were also analyzed for DM (Method 935.29; AOAC International, 2007), and for CP 

following the Dumas procedure (Method 968.06; AOAC International, 2007). Diets and ileal 

samples were also analyzed for chromium (Method 990.08; AOAC International, 2007). 

Ingredients were analyzed for ash (Method 942.05; AOAC International, 2007), ADF (Method 

973.18; AOAC International, 2007), NDF (Holst, 1973), lignin (method 973.18 (A-D); AOAC 

International, 2007), furosine as described by Kim et al. (2012), total reducing sugars (Dubois et 

al., 1956), ADIN (method 990.03; AOAC International, 2007), Ca and P by inductively coupled 

plasma (ICP) spectroscopy (Method 985.01; AOAC International, 2007), total fat by acid 

hydrolysis using 3N HCl (Sanderson, 1986) followed by crude fat extraction using petroleum 

ether (Method 2003.06; AOAC International, 2007) on a Soxtec 2050 automated analyzer (FOSS 

North America, Eden Prairie, MN), and for total glucosinolates (Method ISO 9167-1:1992, 

Eurofins, Des Moines, IA). Minolta L* (lightness), a* (redness), and b* (yellowness) values for 

each batch of canola meal were determined (8 mm aperture, D65 light source, and 0° observer, 

Minolta Camera Co., Osaka, Japan). 

Calculations and Statistical Analysis  

The AID and SID values were calculated as previously described (Stein et al., 2007). The 

Lys:CP ratio in each canola meal sample was calculated by expressing the concentration of Lys 

in the sample as a percentage of the CP in the sample (Stein et al., 2009), and the concentration 

of reactive Lys was calculated as previously described using furosine to indicate the 

concentration of regenerated Lys (Kim et al., 2012). Data were analyzed using the MIXED 

procedure (SAS Institute Inc., Cary, NC). The presence of outliers was evaluated using the 

UNIVARIATE procedure of SAS. The model included diet as a fixed effect and pig and period 
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as random effects. Linear and quadratic effects of increasing time of heat treatment on the AID 

and SID of AA were analyzed by orthogonal polynomial contrasts. Regression equations to 

estimate the concentration of SID AA were developed using the REG procedure in SAS. The pig 

was the experimental unit and significance among means was assessed with an α level of 0.05. 

 

RESULTS  

Pigs recovered well after the surgery. Feed intake was normalized within a week post-

surgery. Pigs remained healthy during the experiment, and no feed refusals were observed.  

 The concentrations of ADF were 20.00, 23.63, 22.73, and 31.30% in non-autoclaved 

canola meal, and canola meal autoclaved for 20, 30, or 45 min, respectively (Table 4.1).  The 

non-autoclaved canola meal contained 33.36% NDF, whereas the autoclaved canola meal 

contained 42.18, 41.95, and 46.88% NDF (20, 30, and 45 min, respectively). Non-autoclaved 

canola meal contained 8.02% lignin, but the concentrations of lignin in canola meals that were 

autoclaved for 20, 30, and 45 min were 10.74, 10.96, and 16.45%, respectively. The 

concentration of ADIN in the non-autoclaved canola meal was 0.37%, but autoclaving canola 

meal for 20, 30, or 45 min resulted in ADIN concentrations of 0.80, 0.88, and 1.75%, 

respectively. The concentration of reducing sugars in autoclaved canola meal was 4.20, 4.34, and 

3.31% (20, 30, and 45 min, respectively), whereas the concentration of reducing sugars in non-

autoclaved canola meal was 5.05%. The concentration of Lys was 1.36% in the canola meal 

autoclaved for 45 min vs. 1.92% in non-autoclaved canola meal. Non-autoclaved canola meal 

contained 0.016% furosine, but autoclaved canola meal contained 0.033, 0.033, and 0.025% 

furosine (20, 30, and 45 min, respectively). The concentration of reactive Lys was 1.90% in non-

autoclaved canola meal, whereas canola meal that was autoclaved for 20, 30 and 45 min 
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contained 1.53, 1.47, and 1.33% reactive Lys, respectively. Lightness (color L*) was 52.88 in 

non-autoclaved canola meal, 47.19 in canola meal autoclaved for 20 min, 47.63 in canola meal 

autoclaved for 30 min, and 45.08 in canola meal autoclaved for 45 min.  

 The AID of CP and all AA was reduced (quadratic, P < 0.01) as a result of increasing 

time of autoclaving (Table 4.4). Autoclaving of canola meal also reduced (quadratic, P < 0.01) 

the SID of CP and all AA (Table 4.5).  

 A regression equation that uses the concentration (%) of reactive Lys as an independent 

variable may be used to predict the concentration (%) of SID Lys in heat-damaged canola meal 

(SID Lys = -1.66 + 1.60 × reactive Lys; r
2
 = 0.83; Table 4.6). The concentration (%) of SID Lys 

in canola meal may be also calculated by regression equation using the concentration (%) of 

reducing sugars (SID Lys = -1.65 + 0.59 × reducing sugars; r
2
 = 0.97). The concentration of 

lignin (%) may be used to predict the concentration (%) of SID Met (SID Met = 0.76 - 0.02 × 

lignin; r
2
 = 0.93), whereas the concentrations of ADF in combination with the concentration of 

reducing sugars may be used to predict the concentration of SID Thr [SID Thr = 3.16 – (0.06 × 

ADF) – (0.15 × reducing sugars); r
2
 = 0.89] and SID Trp [SID Trp = 0.99 – (0.018 × ADF) – 

(0.05 × reducing sugars); r
2
 = 0.88].  

 

DISCUSSION 

Canola meal contains glucosinolates, which are antinutritional factors that may reduce 

feed intake because of their bitter taste, and which also may decrease growth performance 

(Seneviratne et al, 2010). Canola meal should not be included in diets of pigs at inclusion levels 

that result in dietary total concentration of glucosinolates that exceed 2 μmol/g (Arntfield and 

Hickling, 2011). Total glucosinolates in the non-autoclaved canola meal used in this experiment 
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was 1.58 μmol/g and even at relatively high inclusion levels of canola meal (42%) in the 

experimental diets, the calculated concentration of glucosinolates in the mixed diets (0.66 

μmol/g) was well below the maximum recommended levels. Therefore, we did not expect any 

negative effects of glucosinolates on feed intake of pigs during the experiment. 

During the desolventization and toasting processes of canola meal, injection of live steam 

and temperatures ranging from 95 to 115°C during an average of 30 min are commonly used 

(Canola Council of Canada, 2009). Processing, however, may not be consistent among 

processors and this may create some variability in the nutritional composition of canola meal 

(Spragg and Mailer, 2007). The concentration of Lys in different sources of canola meal ranges 

from 1.64 to 2.40% (Spragg and Mailer, 2007; Newkirk, 2011). Because some of this variation 

may be a result of heat damage and because the concentration of Lys in canola meal used in this 

experiment ranged from 1.36 to 1.92%, we believe that heat damage caused by autoclaving in 

this experiment is equivalent to heat damage that may be caused by processing conditions at 

different processing plants. 

The concentrations of DM, CP, and AA in the non-autoclaved canola meal used in the 

experiment were in agreement with previously published values (Mariscal-Landín et al., 2008, 

NRC, 2012). The increase in analyzed ADF and lignin observed as a result of increased time of 

autoclaving also has been observed for Italian ryegrass (Miao et al., 1994). The analyzed 

concentrations of ADF and lignin may increase because some melanoidins, which are polymers 

originating from Maillard reactions, may be analyzed as ADF or lignin (Marlett and Johnson, 

1985; Miao et al., 1994). Consequently, heat treatment of feed ingredients is expected to increase 

analyzed values of ADF, NDF, and lignin. Our results for the concentration of ADIN in heat-

damaged canola meal are in agreement with previous observations in which the concentration of 
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ADIN increased as a result of heat damage (Cromwell et al., 1993; Schroeder et al., 1996; 

Seifdavati and Taghizadeh, 2012). This observation indicates that ADIN may be used as an 

indicator of heat damage in canola meal. The concentrations of reducing sugars and Lys were 

concomitantly reduced as time of autoclaving increased, and this was expected and clearly 

reflects the occurrence of Maillard reactions as a result of heat damage, in which the carbonyl 

group of reducing sugars reacts with the epsilon amino group of Lys to form Amadori 

compounds and other Maillard reaction products (Nursten, 2005). We observed that the 

concentration of furosine increased with autoclaving of canola meal up to 30 min, but the 

concentration of furosine was slightly reduced in canola meal that was autoclaved for 45 min. 

The reason for these observations is that furosine is a product of Amadori compounds subjected 

to acid hydrolysis (Boucher et al., 2009). Amadori compounds are formed during the early 

Maillard reaction stage, but if the reaction progresses to more advanced stages, the Amadori 

compounds are converted to advanced Maillard reaction products (Nursten, 2005). Therefore, 

autoclaving of canola meal for 45 min likely resulted in conversion of Amadori compounds to 

advanced Maillard reaction products, thus causing a reduction in the concentration of furosine. 

Although we observed a numerical decrease in the Lys concentration of canola meal as time of 

autoclaving increased, the concentration of CP remained unaffected regardless of the degree of 

heat damage. Thus, the calculated Lys:CP ratio also decreased as time of autoclaving increased. 

It has been suggested that the Lys:CP ratio may be used as an indicator of heat damage in feed 

ingredients and the current results support this assumption (Cozannet et al., 2010). A change in 

color of canola meal (i.e., less yellow and more brown) also has been observed after the 

desolventization and toasting processes (Newkirk et al., 2003), which is likely a result of the 
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formation of advanced Maillard reaction products such as pre-melanoidins and melanoidins that 

give a brown pigmentation to heat-damaged feeds (Nursten, 2005). 

Values for the AID of CP and AA that were determined in this experiment for non-

autoclaved canola meal are in agreement with previously published values (Fan and Sauer, 1995; 

Stein et al., 2005; NRC, 2012). The observation that the AID of most AA is reduced due to 

autoclaving is in agreement with data for autoclaved SBM (Fontaine et al., 2007; González-Vega 

et al., 2011). Values for the SID of AA in the non-autoclaved canola meal determined in this 

experiment are also in agreement with previously reported values (Sauvant et al., 2004; Stein et 

al., 2005; Woyengo et al., 2010; Rostagno et al., 2011). The reason the SID of Lys is reduced 

more than the SID of other AA is that in the presence of heat, moisture, and pressure, reducing 

sugars condense with the epsilon amino group of Lys (Nursten, 2005). This reaction initiates a 

series of other reactions. After Lys has reacted with reducing sugars, Amadori compounds are 

generated, and in more advanced stages, pre-melanoidins and melanoidins are generated, which 

reduces the digestibility of Lys. The observed reduction in SID of other AA may be associated 

with their direct participation in Maillard reactions (e.g., Cys and Arg) or with the formation of 

cross-links that impair digestibility (Finot et al., 1990; Ledl and Schleicher, 1990). 

Regression equations developed in the experiment to predict the concentration of SID 

Lys in heat-damaged canola meal have a relatively high r
2
, which indicates that variations are 

well explained by the models. The concentration of reactive Lys, calculated by the furosine 

procedure, is a good predictor for the concentration of SID Lys in heat-damaged canola meal. To 

our knowledge, this is the first time that the usefulness of reactive Lys, determined by the 

furosine procedure, to predict the concentration of SID Lys in canola meal fed to pigs is 

demonstrated. The concentration of SID Lys in DDGS is also accurately (r
2
 = 0.90) predicted 
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from the concentration of reactive Lys (Kim et al., 2012). The concentration of analyzed 

reducing sugars is also a good predictor of the concentration of SID Lys in canola meal that has 

been heat-damaged. Regression equations developed in this experiment are valid if the same 

source of canola meal was used, as was the case in this experiment. Further research, however, 

needs to be conducted to determine if the use of reducing sugars as a predictor for the 

concentration of SID Lys in different sources of canola meal is applicable.  

Conclusions 

Results of this experiment confirm that the concentration and digestibility of AA in 

canola meal are reduced as a consequence of heat damage. This indicates that some of the 

variations in AA concentration and digestibility among different sources of canola meal fed to 

pigs are likely caused by differences in processing, specifically, the desolventization step, which 

likely causes Maillard reactions. Therefore, standardization of desolventization steps among 

processing plants may be beneficial to feed manufacturers and to the livestock industry, as it may 

create a product that is less variable in AA composition and digestibility. Regression equations 

developed in this experiment may be used to predict the concentration of SID AA in canola 

meal.  
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TABLES 

 

Table 4.1. Chemical composition of canola meal 

  Canola meal 

    Autoclaved at 130°C 

Item
1
  Non-autoclaved  20 min  30 min  45 min 

DM, %  90.87  89.44  89.78  88.42 

Ash, %  7.54  7.47  7.66  7.55 

CP, %  36.79  36.49  36.88  36.90 

ADF, %  20.00  23.63  22.73  31.30 

NDF, %  33.36  42.18  41.95  46.88 

Lignin, %  8.02  10.74  10.96  16.45 

ADIN,
1
 %  0.37  0.80  0.88  1.75 

Reducing sugars, %  5.05  4.20  4.34  3.31 

AEE,
1 

%  3.71  3.34  3.79  1.97 

Total glucosinolates, μmol/g  1.58  -  -  - 

Ca, %  0.64  0.61  0.65  0.62 

P, %  1.05  1.03  1.02  0.99 

Lys:CP ratio
2
   5.22  4.30  4.09  3.69 

Furosine  0.016  0.033  0.033  0.025 

Reactive Lys
3
  1.90  1.53  1.47  1.33 

L*
4 

 52.88  47.19  47.63  45.08 

a*
4 

 5.76  6.26  5.97  6.35 
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Table 4.1. (Cont.)         

b*
4 

 12.56  8.93  8.75  7.44 

Indispensable AA, %         

  Arg  2.22  1.96  1.90  1.74 

  His  0.97  0.92  0.90  0.91 

  Ile  1.41  1.40  1.32  1.35 

  Leu  2.60  2.55  2.50  2.55 

  Lys  1.92  1.57  1.51  1.36 

  Met  0.74  0.72  0.71  0.72 

  Phe  1.48  1.45  1.42  1.44 

  Thr  1.62  1.60  1.58  1.61 

  Trp  0.49  0.48  0.49  0.49 

  Val  1.81  1.79  1.70  1.72 

 All indispensable  15.26  14.44  14.03  13.89 

Dispensable AA, %         

  Ala  1.65  1.62  1.60  1.63 

  Asp  2.65  2.58  2.55  2.55 

  Cys  0.87  0.78  0.76  0.74 

  Glu  6.29  6.17  6.11  6.20 

  Gly  1.88  1.84  1.81  1.84 

  Pro  2.15  2.14  2.09  2.10 

  Ser  1.61  1.58  1.59  1.60 

All dispensable  17.10  16.71  16.51  16.66 
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Table 4.1. (Cont.)         

Total AA  32.36  31.15  30.54  30.55 

 
1
ADIN = acid detergent insoluble nitrogen; AEE = acid hydrolyzed ether extract. 

 
2
Calculated by expressing the concentration of Lys in each ingredient as a percentage of 

the concentration of CP (Stein et al., 2009). 

 
3
Reactive Lys (%) = [Lys (%) – (Furosine (%) ÷ 0.32 × 0.40)]; Pahm et al., 2008.

 

4
L* = lightness; a* = redness; b* = yellowness. 
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Table 4.2. Ingredient composition of experimental diets, as-fed basis 

  Canola meal   

    Autoclaved at 130°C   

Ingredient, %  Non-autoclaved  20 min  30 min  45 min  N-free diet 

Canola meal  42.00  42.00  42.00  42.00  - 

Cornstarch  42.15  42.15  42.15  42.15  66.40 

Sucrose  10.00  10.00  10.00  10.00  20.00 

Solka floc
1 

 -  -  -  -  5.00 

Soybean oil  3.40  3.40  3.40  3.40  4.00 

Ground limestone  0.70  0.70  0.70  0.70  - 

Monocalcium phosphate  0.65  0.65  0.65  0.65  3.00 

Sodium chloride  0.40  0.40  0.40  0.40  0.40 

Magnesium oxide  -  -  -  -  0.10 

Potassium carbonate  -  -  -  -  0.40 

Chromic oxide  0.40  0.40  0.40  0.40  0.40 

Vitamin-mineral premix
2 

 0.30  0.30  0.30  0.30  0.30 

 
1
Fiber Sales and Development Corp., Urbana, OH. 

2
Provided the following per kilogram of complete diet: Vitamin A as retinyl acetate, 

11,128 IU; vitamin D3 as cholecalciferol, 2,204 IU; vitamin E as DL-alphatocopheryl acetate, 66 

IU; vitamin K as menadione nicotinamide bisulfite, 1.42 mg; thiamin as thiamine mononitrate, 

0.24 mg; riboflavin, 6.58 mg;  pyridoxine as pyridoxine hydrochloride, 0.24 mg; vitamin B12, 

0.03 mg; D-pantothenic acid as D-calcium pantothenate, 23.5 mg; niacin as nicotinamide, 1.0 

mg, and nicotinic acid, 43.0 mg; folic acid, 1.58 mg; biotin, 0.44 mg; Cu, 10 mg as copper 

sulfate; Fe, 125 mg as iron sulfate; I, 1.26 mg as potassium iodate; Mn, 60 mg as manganese 

sulfate; Se, 0.3 mg as sodium selenite; and Zn, 100  mg as zinc oxide. 



 

91 

 

Table 4.3. Chemical composition of experimental diets, as-fed basis 

  Canola meal  

    Autoclaved at 130°C  

Item  Non-autoclaved  20 min  30 min  45 min N-free diet 

DM, %  91.86  91.24  91.01  91.36 92.66 

CP, %  17.17  15.24  15.09  15.04 0.19 

Indispensable AA, %          

  Arg  0.96  0.82  0.79  0.71 - 

  His  0.42  0.39  0.38  0.37 - 

  Ile  0.59  0.57  0.56  0.55 - 

  Leu  1.13  1.07  1.05  1.03 - 

  Lys  0.83  0.66  0.64  0.56 - 

  Met  0.31  0.28  0.27  0.27 - 

  Phe  0.64  0.61  0.60  0.58 - 

  Thr  0.71  0.67  0.65  0.65 - 

  Trp  0.21  0.20  0.19  0.20 - 

  Val  0.77  0.73  0.72  0.70 - 

 All indispensable  6.57  6.00  5.85  5.62 - 

Dispensable AA, %          

  Ala  0.73  0.68  0.67  0.66 - 

  Asp  1.18  1.10  1.07  1.05 - 

  Cys  0.38  0.33  0.32  0.29 - 

  Glu  2.77  2.63  2.57  2.53 - 
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Table 4.3. (Cont.)          

  Gly  0.82  0.77  0.75  0.74 - 

  Pro  0.95  0.90  0.86  0.85 - 

  Ser  0.72  0.67  0.65  0.65 - 

  All dispensable  7.55  7.08  6.89  6.77 - 
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Table 4.4. Apparent ileal digestibility of CP and AA in canola meal subjected to increasing levels of heat treatment by growing pigs
1 

  Canola meal     

    Autoclaved at 130° C  SEM  P-value
2 

Item  Non-autoclaved  20 min  30 min  45 min    Linear Quadratic 

CP, %  59.75  48.55  51.32  22.66  2.5  < 0.01 < 0.01 

Indispensable AA, %              

  Arg  78.72  74.14  76.74  58.61  2.8  < 0.01 < 0.01 

  His  77.03  73.87  74.83  56.17  1.1  < 0.01 < 0.01 

  Ile  69.21  65.23  65.94  43.98  1.1  < 0.01 < 0.01 

  Leu  74.95  71.28  71.41  52.79  0.9  < 0.01 < 0.01 

  Lys  61.89  48.35  49.36  12.91  1.5  < 0.01 < 0.01 

  Met  81.14  77.83  78.14  64.05  0.6  < 0.01 < 0.01 

  Phe  74.28  71.57  72.09  53.01  1.3  < 0.01 < 0.01 

  Thr  63.17  59.17  59.21  36.21  1.2  < 0.01 < 0.01 

  Trp  66.28  64.03  63.13  44.06  1.1  < 0.01 < 0.01 

  Val  67.42  62.50  63.38  39.00  1.1  < 0.01 < 0.01 
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Table 4.4. (Cont.)              

  Mean  71.98  67.05  67.90  46.15  1.0  < 0.01 < 0.01 

Dispensable AA, %              

  Ala  62.98  54.18  56.26  27.75  2.1  < 0.01 < 0.01 

  Asp  63.93  55.38  56.60  27.69  1.2  < 0.01 < 0.01 

  Cys  69.41  65.19  64.57  40.21  1.2  < 0.01 < 0.01 

  Glu  79.11  76.52  76.56  60.61  1.0  < 0.01 < 0.01 

  Gly  46.68  34.23  36.01  -2.87  6.0  < 0.01 < 0.01 

  Ser  66.01  61.62  62.08  40.63  1.2  < 0.01 < 0.01 

  Mean  64.69  57.91  58.68  32.33  1.9  < 0.01 < 0.01 

 
1
Data are means of 10 observations. 

 
2
Linear and quadratic effects of time of autoclaving.  
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Table 4.5. Standardized ileal digestibility of CP and AA in canola meal subjected to increasing levels of heat treatment by growing 

pigs
1 

  Canola meal     

    Autoclaved at 130° C  SEM  P-value
2
 

Item  Non-autoclaved  20 min  30 min  45 min    Linear Quadratic 

CP, %  71.69  61.96  64.78  34.54  2.5  < 0.01 < 0.01 

Indispensable AA, %              

  Arg  84.64  81.02  83.86  66.56  2.8  < 0.01 < 0.01 

  His  81.34  78.48  79.55  61.04  1.1  < 0.01 < 0.01 

  Ile  75.42  71.61  72.43  50.61  1.1  < 0.01 < 0.01 

  Leu  80.25  76.84  77.07  58.58  0.9  < 0.01 < 0.01 

  Lys  68.17  56.24  57.43  20.81  1.5  < 0.01 < 0.01 

  Met  85.08  82.15  82.62  68.54  0.6  < 0.01 < 0.01 

  Phe  80.25  77.79  78.40  59.56  1.3  < 0.01 < 0.01 

  Thr  71.48  67.92  68.20  45.24  1.2  < 0.01 < 0.01 

  Trp  73.88  71.95  71.45  51.99  1.1  < 0.01 < 0.01 
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Table 4.5. (Cont.)              

  Val  74.04  69.44  70.39  46.24  1.1  < 0.01 < 0.01 

  Mean  77.85  73.44  74.44  53.02  1.0  < 0.01 < 0.01 

Dispensable AA, %              

  Ala  74.20  66.14  68.36  40.08  2.1  < 0.01 < 0.01 

  Asp  71.37  63.31  64.74  36.02  1.2  < 0.01 < 0.01 

  Cys  75.59  72.26  71.85  48.27  1.2  < 0.01 < 0.01 

  Glu  83.33  80.94  81.07  65.21  1.0  < 0.01 < 0.01 

  Gly  69.21  58.06  60.42  21.96  6.0  < 0.01 < 0.01 

  Ser  74.34  70.52  71.23  49.81  1.2  < 0.01 < 0.01 

  Mean  74.68  68.59  69.61  43.56  1.9  < 0.01 < 0.01 

1
Data are means of 10 observations; Values for standardized ileal digestibility were calculated by correcting apparent ileal 

digestibility values for basal endogenous losses (g/kg of DMI), which were determined by feeding pigs a N-free diet: CP, 22.32; Arg, 

0.62; His, 0.20; Ile, 0.40; Leu, 0.65; Lys, 0.57; Met, 0.13; Phe, 0.42; Thr, 0.64; Trp, 0.17; Val, 0.55; Ala, 0.89; Asp, 0.96, Cys, 0.26; 

Glu, 1.27; Gly, 2.01; and Ser, 0.65. 

 
2
Linear and quadratic effects of time of autoclaving.
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Table 4.6. Linear regressions to predict the concentration (%) of standardized ileal digestible (SID) AA in canola meal fed to pigs
1
 

  Intercept  Independent variables
2
  

Dependent variable  Estimate SE P-value  X1 Estimate SE P-value X2 Estimate SE P-value r
2
 

SID Arg  -0.20 0.16 0.23  RS 0.41 0.03 < 0.01 - - - - 0.76 

SID His  1.02 0.02 < 0.01  Lignin -0.03 0.001 < 0.01 - - - - 0.89 

SID Ile  0.81 0.12 < 0.01  NDF 0.01 0.004 < 0.01 ADIN -0.40 0.04 < 0.01 0.92 

SID Leu  2.38 0.14 < 0.01  NDF 0.01 0.005 < 0.05 Lignin -0.09 0.009 < 0.01 0.92 

SID Lys  -1.66 0.19 < 0.01  RL 1.60 0.12 < 0.01 - - - - 0.83 

  -1.65 0.09 < 0.01  RS 0.59 0.02 < 0.01 - - - - 0.96 

SID Met  0.76 0.01 < 0.01  Lignin -0.02 0.0007 < 0.01 - - - - 0.93 

SID Phe  1.80 0.05 < 0.01  ADF -0.03 0.002 < 0.01 - - - - 0.84 

SID Thr  3.16 0.55 < 0.01  ADF -0.06 0.01 < 0.01 RS -0.15 0.07 < 0.05 0.89 

SID Trp  0.99 0.15 < 0.01  ADF -0.018 0.0028 < 0.01 RS -0.05 0.02 < 0.05 0.88 

SID Val  1.01 0.16 < 0.01  NDF 0.02 0.004 < 0.01 ADIN -0.55 0.05 < 0.01 0.93 

 
1
n = 39 observations; for all models P < 0.01. 

 
2
ADIN = acid detergent insoluble nitrogen; RS = reducing sugars; RL = Reactive Lys (%) = [Lys (%) – (Furosine (%) ÷ 0.32 × 

0.40)].
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CHAPTER 5 

AMINO ACID DIGESTIBILITY OF HEAT DAMAGED SUNFLOWER MEAL AND 

COTTONSEED MEAL FED TO GROWING PIGS 

 

ABSTRACT: Two experiments were conducted to determine the effects of heat damage, 

achieved by autoclaving, on the nutritional composition and on the standardized ileal 

digestibility (SID) of AA in sunflower meal (SFM), and cottonseed meal (CSM) fed to growing 

pigs. The second objective was to test the hypothesis that the concentration of SID AA in SFM 

and CSM may be predicted from the nutrient composition of the ingredients. In Exp. 1, ten 

growing pigs (initial BW: 23.1 ± 1.3 kg) were surgically equipped with a T-cannula in the distal 

ileum and allotted to a replicated  5 × 5 Latin square design with 5 diets and 5 periods in each 

square. A common source of SFM was separated into 4 batches that were either not autoclaved 

or autoclaved at 130°C for 20, 40, or 60 min. Four diets that contained each of the 4 batches of 

SFM were formulated, and SFM was the only source of CP and AA in the diets. A N-free diet 

that was used to determine the endogenous losses of CP and AA from pigs was also formulated. 

Each period consisted of 5 d of adaptation to the diets followed by 2 d of ileal digesta collection. 

The SID of Lys in SFM was reduced (linear, P < 0.05) from 83.2 to 63.5% in non-autoclaved 

SFM or SFM autoclaved for 60 min at 130°C, respectively. The concentrations of Lys and 

reducing sugars in SFM may be used as predictors (r
2
 = 0.85) of the concentration of SID Lys in 

SFM. In Exp. 2, ten growing pigs (initial BW: 35.0 ± 1.5 kg) were surgically equipped with a T-

cannula in the distal ileum and allotted to a replicated  5 × 5 Latin square design with 5 diets and 

5 periods in each square. A source of CSM was separated into 4 batches that were either not 

autoclaved or autoclaved at 130°C for 15, 35, or 60 min. Four diets containing CSM as the only 

source of CP and AA were formulated. A N-free diet was also formulated and used as described 
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for Exp. 1. The SID of Lys in non-autoclaved CSM (66.2%) was greater (P < 0.05) than in 

autoclaved (60 min at 130°C) CSM (54.1%). The equation (r
2
 = 0.68) that best predicted the 

concentration of SID Lys in CSM includes the concentration of ADIN. In both experiments, the 

SID of most AA was reduced (linear or quadratic, P < 0.05) as a result of heat damage. In 

conclusion, heat damage reduces the SID of AA in SFM and CSM, and the concentration of SID 

Lys in these ingredients may be predicted from the concentration of ADIN, Lys, or reducing 

sugars. 

Key words: amino acids, cottonseed meal, digestibility, heat damage, pigs, sunflower meal 

 

INTRODUCTION 

Sunflower meal and cottonseed meal are alternative protein sources for swine diets. 

Solvent extraction of oil from sunflower and cottonseed involves application of heat and 

moisture to desolventize the meal. Cottonseed meal contains the antinutritional factor, gossypol, 

which may be deactivated by heat treatment of the meal. Processes involving heat and moisture 

may cause Maillard reactions (Nursten, 2005), and the application of heat to feed ingredients 

may decrease the concentration, digestibility, and utilization of Lys and other AA (Van 

Barneveld et al., 1994; Pahm et al., 2008; Boucher et al., 2009; González-Vega et al., 2011). 

Maillard reactions start with the condensation between an amino group of AA and the carbonyl 

group of a reducing sugar (Nursten, 2005). Amino acids that participate in the Maillard reactions 

may become unavailable to pigs and Lys is the AA most susceptible to participate in these 

reactions (Pahm et al., 2008). Conventional AA analysis of heat-damaged feed ingredients are 

believed to overestimate the concentration of Lys because Lys that has reacted with reducing 

sugars is partially recovered during the acid hydrolysis step although they are not available for 
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protein synthesis. This overestimation of the concentration of Lys in heat-damaged feed 

ingredients may result in inaccuracies in diet formulation, which ultimately may result in 

decreased performance of pigs. Determination of reactive Lys, color, and the Lys:CP ratio have 

been suggested as approaches to estimate the availability of Lys in heat processed feed 

ingredients (Moughan and Rutherfurd, 1996; Fontaine et al., 2007; Pahm et al., 2008; Kim et al., 

2012). There is, however, limited information about the effects of heat processing on AA 

digestibility in sunflower meal and cottonseed meal, and to our knowledge, the use of chemical  

composition and physical characteristics either alone or in combination to predict the 

concentration of digestible AA in sunflower meal and cottonseed meal that have been heat-

damaged have not been reported. Therefore, the primary objectives of these experiments were to 

determine the effects of heat damage on the apparent ileal digestibility (AID) and the 

standardized ileal digestibility (SID) of AA in sunflower meal and in cottonseed meal fed to 

growing pigs. A second objective was to develop regression equations that may be used to 

predict the concentration of SID AA in sunflower meal and cottonseed meal. 

 

MATERIALS AND METHODS 

The protocols for these experiments were reviewed and approved by The Institutional 

Animal Care and Use Committee at the University of Illinois. Pigs used in the experiments were 

the offspring of G-performer boars mated to F-25 females (Genetiporc, Alexandria. MN). 

Exp. 1 (AA Digestibility of Sunflower Meal) 

Animals, Experimental Design, and Diets. Ten growing pigs (initial BW: 23.1 ± 1.3 kg) were 

surgically equipped with a T-cannula in the distal ileum (Stein et al., 1998) and allotted to a 

replicated 5 × 5 Latin square design with 5 diets and 5 periods in each square. Pigs were placed 
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in pens (1.2 × 1.5 m) equipped with a nipple drinker and a feeder. Sunflower meal was sourced 

from Archer Daniels Midland (Enderlin, ND). The sunflower meal was separated into 4 batches 

that were either not autoclaved or autoclaved at 130°C for 20, 40, or 60 min. Four diets that 

contained each of the 4 batches of sunflower meal were formulated. Sunflower meal was the 

only source of CP and AA in the diets. A N-free diet used to determine the endogenous losses of 

CP and AA in the pigs also was formulated. 

Feed allowance was calculated as 3 times the maintenance requirement for energy (i. e., 

106 kcal of ME/kg BW
0.75

; NRC, 1998). Feed allowance was adjusted according to the BW of 

pigs at the beginning of each period. Feed was provided once daily at 800 h and water was 

available at all times.  

Sample Collection. Each period consisted of 7 d. The initial 5 d were considered an adaptation 

period to the diet.  Ileal digesta were collected on d 6 and 7 for 8 h by attaching a plastic bag to 

the cannula barrel and digesta flowing into the bag were collected. Bags were replaced whenever 

they were filled with digesta, or at least once every 30 min, and immediately stored at – 20
o
C to 

prevent bacterial degradation of AA in the digesta.  

Chemical Analyses. At the conclusion of the experiment, ileal digesta samples were thawed, 

mixed within animal and diet, and a sub-sample was lyophilized, finely ground, and analyzed. A 

sample of each diet and of each batch of sunflower meal was collected at the time of diet mixing. 

Diets, ingredients, and ileal samples were analyzed for AA by ion-exchange chromatography 

with post-column derivatization with ninhydrin. Amino acids were oxidized with performic acid, 

which was neutralized with Na metabisulfite (Llames and Fontaine, 1994; Commission 

Directive, 1998). Amino acids were liberated from the protein by hydrolysis with 6N HCL for 24 

h at 110°C and quantified with the internal standard by measuring the absorption of reaction 
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products with ninhydrin at 570 nm. Tryptophan was determined by HPLC with fluorescence 

detection (extinction 280 nm, emission 356 nm) after alkaline hydrolysis with barium hydroxide 

octahydrate for 20 h at 110°C (Commission Directive, 2000). Diets, ingredients, and ileal 

samples were also analyzed for DM (Method 935.29; AOAC International, 2007), and for CP 

following the Dumas procedure (Method 968.06; AOAC International, 2007), and diets and ileal 

samples were analyzed for chromium (Method 990.08; AOAC International, 2007). Each batch 

of sunflower meal was also analyzed for ash (Method 942.05; AOAC International, 2007), ADF 

(Method 973.18; AOAC International, 2007), NDF (Holst, 1973), lignin (method 973.18 (A-D); 

AOAC International, 2007), ADIN (method 990.03; AOAC International, 2007), total reducing 

sugars (Dubois et al., 1956), furosine as described by Kim et al. (2012), for Ca and P by 

inductively coupled plasma (ICP) spectroscopy (Method 985.01; AOAC International, 2007), 

and for total fat by acid hydrolysis using 3N HCl (Sanderson, 1986) followed by crude fat 

extraction using petroleum ether (Method 2003.06; AOAC International, 2007) on a Soxtec 2050 

automated analyzer (FOSS North America, Eden Prairie, MN). The Minolta L* (lightness) value 

for each batch of sunflower meal was also determined (8 mm aperture, D65 light source, and 0° 

observer, Minolta Camera Company, Osaka, Japan). 

Calculations and Statistical Analysis. Values for AID and SID of CP and AA in each batch of 

sunflower meal were calculated (Stein et al., 2007), and the Lys:CP ratio in each batch was 

calculated by expressing the concentration of Lys in the sample as a percentage of the CP in the 

sample (Kim et al., 2012). The concentration of reactive Lys was calculated from the 

concentration of furosine as described by Kim et al. (2012). Data were analyzed using the 

MIXED procedure (SAS Inst. Inc., Cary, NC). Normality of the data and the presence of outliers 

were evaluated using the UNIVARIATE procedure of SAS. The model included diet as a fixed 
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effect and pig and period as random effects. Linear and quadratic effects of increasing time of 

heat treatment on the AID and SID of AA were analyzed by orthogonal polynomial contrasts. 

Regression equations to estimate the concentration of SID AA were developed using the REG 

procedure in SAS. The forward selection method was used to choose the equations that best fit 

the data, but in the case of the regression equation to predict the concentration of SID Lys, the 

concentration of reactive Lys was forced into the model as an independent variable. The pig was 

the experimental unit and significance among means was assessed with an α level of 0.05. 

Exp. 2 (AA Digestibility of Cottonseed Meal) 

Animals, Experimental Design, and Diets. Ten growing pigs (initial BW: 35.0 ± 1.5 kg) were 

surgically equipped with a T-cannula in the distal ileum (Stein et al., 1998) and allotted to a 

replicated 5 × 5 Latin square design with 5 diets and 5 periods in each square. Pigs were placed 

in pens (1.2 × 1.5 m) equipped with a nipple drinker and a feeder. Cottonseed meal was procured 

from Delta Oil Mill (Jonestown, MS). The cottonseed meal was separated into 4 batches that 

were either not autoclaved or autoclaved at 130°C for 15, 35, or 60 min. Four diets that contained 

each of the 4 batches of cottonseed meal were formulated, and cottonseed meal was the only 

source of CP and AA in the diets. A N-free diet that was used to determine the endogenous 

losses of CP and AA in the pigs was also formulated. 

Feed allowance was calculated as 3 times the maintenance requirement of energy (i. e., 

106 kcal of ME/kg BW
0.75

; NRC, 1998). Feed allowance was adjusted according to the BW of 

pigs at the beginning of each period. Feed was provided once daily at 0800 h and water was 

available at all times.  

Ileal samples were collected from pigs as described for Exp. 1 and ileal samples, diets, 

and ingredients were processed and chemically analyzed as described for Exp. 1. Each batch of 
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cottonseed meal was also analyzed for free gossypol (Method Ba 8a-99; AOCS, 1998). Data 

were analyzed as described for Exp. 1. 

 

RESULTS 

Exp. 1 (Sunflower Meal) 

 The concentration of CP was 35.92% in the non-autoclaved sunflower meal whereas the 

sunflower meals that were autoclaved for 20, 40, or 60 min contained 36.55, 36.11, and 35.35% 

CP, respectively (Table 5.1). Non-autoclaved sunflower meal contained 21.60% ADF, but the 

ADF concentrations were 22.80, 19.87, and 24.12% in sunflower meals that were autoclaved for 

20, 40, or 60 min, respectively. The concentration of NDF was 31.90, 34.88, 34.90, and 43.21% 

in non-autoclaved sunflower meal, and sunflower meals that were autoclaved for 20, 40, or 60 

min, respectively. The concentration of lignin in the sunflower meals that were autoclaved for 

20, 40, and 60 min was 5.42, 5.66, and 5.73%, respectively, and the concentration of lignin in 

non-autoclaved sunflower meal was 5.59%. Non-autoclaved sunflower meal contained 0.22% 

ADIN, and the concentration of ADIN in sunflower meal that was autoclaved for 20, 40, and 60 

min was 0.18, 0.25, and 0.28%, respectively. Autoclaving of sunflower meal for 20, 40, or 60 

min resulted in concentrations of reducing sugars of 4.43, 4.18, and 3.74%, respectively, but the 

concentration of reducing sugars in non-autoclaved sunflower meal was 4.64%. The 

concentrations of Lys and reactive Lys were 1.23 and 1.21% in non-autoclaved sunflower meal, 

1.09 and 1.08% in sunflower meal autoclaved for 20 min, 1.08 and 1.05% in sunflower meal 

autoclaved for 40 min, and 0.98 and 0.94% in sunflower meals that were autoclaved for 60 min. 

Non-autoclaved sunflower meal contained 0.013% furosine, whereas the concentration of 

furosine was 0.012, 0.021, and 0.030% in sunflower meal autoclaved for 20, 40, and 60 min, 
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respectively. The concentration of Lys expressed as a percentage of the concentration of CP was 

3.42 in the non-autoclaved sunflower meal whereas for the sunflower meals that were autoclaved 

for 20, 40, or 60 min, the concentration of Lys expressed as a percentage of the concentration of 

CP was 2.98, 2.99, and 2.77, respectively. 

 The AID of CP decreased (linear, P < 0.01) as the time of autoclaving increased (Table 

5.4).  Likewise, increasing the time of autoclaving decreased (linear, P < 0.01) the AID of all 

AA. The SID of CP was also reduced (linear, P < 0.01) by increasing the time of autoclaving 

(Table 5.5). For all AA, increasing the time of autoclaving reduced (linear, P < 0.01) the SID of 

AA. The concentration of SID Lys in sunflower meal may be predicted (P < 0.01) from the 

concentration (%) of analyzed Lys in combination with the concentration (%) of reducing sugars 

using the following equation: SID Lys (%) = -1.00 + 0.54 × Lys + 0.30 × reducing sugars (r
2
 = 

0.85; Table 5.6). 

Exp. 2 (Cottonseed Meal) 

 The concentration of CP was relatively unaltered regardless of time of autoclaving (Table 

5.1). The lignin concentration in non-autoclaved cottonseed meal was 5.52%, and cottonseed 

meals that were autoclaved for 15, 35, and 60 min contained 5.73, 6.49, and 6.68% of lignin, 

respectively. Non-autoclaved cottonseed meal contained 0.20% of ADIN, whereas cottonseed 

meals that were autoclaved for 15, 35, and 60 min contained 0.25, 0.29, and 0.27% of ADIN, 

respectively. Non-autoclaved cottonseed meal contained 3.59% reducing sugars, but cottonseed 

meals that were autoclaved for 15, 35, or 60 min contained 3.47, 1.76, or 2.31% reducing sugars, 

respectively. The Lys concentration in non-autoclaved cottonseed meal was 1.64%, whereas the 

concentration of Lys was 1.59, 1.52, and 1.52% for autoclaved cottonseed meal (15, 35, and 60 

min, respectively). Non-autoclaved cottonseed meal contained 0.027% furosine, whereas 
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cottonseed meal autoclaved for 15, 35, and 60 min contained 0.040, 0.040, and 0.030% furosine, 

respectively. Non-autoclaved cottonseed meal contained 1.61% reactive Lys, but the 

concentration of reactive Lys in cottonseed meal that was autoclaved for 15, 35, and 60 min was 

1.54, 1.47, and 1.48%, respectively. 

 The AID of all indispensable AA in cottonseed meal was quadratically decreased (P < 

0.01) as time of autoclaving increased from 0 to 60 min (Table 5.7). Likewise, the SID of all AA 

in cottonseed meal was reduced (quadratic, P < 0.01) with increasing time of autoclaving (Table 

5.8). The SID of Lys (54.42, 49.75, and 54.10%) in cottonseed meal autoclaved for 15, 35, and 

60 min, respectively, was less (P < 0.05) than the SID of Lys in non-autoclaved cottonseed meal 

(66.21%). 

 For most AA, the SID AA (%) in cottonseed meal may be predicted from the 

concentration (%) of ADIN and from the concentration of other nutritional components, either 

alone or in combination (Table 5.9). The concentration (%) of SID Lys may be predicted using 

the following equation: SID Lys = 1.81 - 3.67 × ADIN, r
2
 = 0.68;  

 

DISCUSSION 

 Pigs maintained good health status throughout the experiments and pigs used in Exp. 1 

consumed their diets well. At the end of period 3 in Exp. 2, some pigs refused to consume all of 

their daily allotments. It has been shown that free gossypol, which is an antinutritional factor in 

cottonseed meal, is toxic to animals and if present in diets in amounts greater than 100 mg/kg 

may cause depressed appetite (Tanksley and Knabe, 1981; Akande et al., 2010). Cottonseed meal 

used in this experiment, however, contained concentrations of free gossypol below detection 

levels and even at relatively high inclusion levels in the diets, the concentration of free gossypol 
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in the cottonseed meal diets was below 100 mg/kg. Diets used in the cottonseed meal experiment 

were also supplemented with ferrous sulfate, which has been reported to mitigate gossypol 

toxicity (Moreira et al., 2006). Nevertheless, after period 3, all pigs were fed regular commercial 

diets for 10 d and, when given the experimental diets for the subsequent experimental periods, no 

issues with feed consumption were observed. 

Effects of Autoclaving on Nutrient Composition 

 The nutrient composition of non-autoclaved sunflower meal and cottonseed meal are in 

agreement with the values reported for these ingredients (Rostagno et al., 2011; NRC, 2012). 

Some variation in the nutritional composition among different sources of feed ingredients exists, 

and these variations may be caused by heat processing used during production of sunflower meal 

and cottonseed meal. As an example, heat damage increases the analyzed concentrations of ADF 

and lignin in hay because of the formation of Maillard products that are analyzed as lignin (Miao 

et al., 1994). The concentration of ADIN in orchardgrass and alfalfa also increases as length of 

exposure to heat increases, although the increase in ADIN concentration in orchardgrass was of a 

greater proportion than that observed for alfalfa (Goering et al., 1973). Heat processing of 

sunflower expellers at 150°C for different lengths of time also resulted in increased 

concentrations of ADIN (Schroeder et al., 1996). Our results for the concentrations of ADIN in 

sunflower meal support the above observations. In the Maillard reactions, reducing sugars and 

Lys are the primary substrates and, therefore, as the reactions progress to form Amadori 

compounds and other Maillard reaction products, it is expected that the concentration of 

substrates decreases (Nursten, 2005). The present results demonstrate this, as the concentrations 

of reducing sugars and Lys were reduced as the length of time sunflower meal and cottonseed 

meal were autoclaved increased. It is also expected that the concentration of furosine in heat-
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damaged feed ingredients increases as the degree of heat damage increases because furosine is 

formed from acid hydrolyzed Amadori compounds formed during the early stages of the 

Maillard reactions (Nursten, 2005). Our data support this hypothesis in the case of sunflower 

meal, but that was not the case for cottonseed meal. The reason for these observations may be 

that the Maillard reactions in autoclaved sunflower meals that were used in this experiment did 

not progress to advanced stages, in which Amadori products are converted to melanoidins. In 

contrast, it appears that autoclaving of cottonseed meal resulted in formation of more advanced 

Maillard reactions. Heat damage of SBM does not affect the concentration of CP, although the 

concentration of Lys is reduced (González-Vega et al., 2011). As a consequence, the 

concentration of Lys expressed as a percentage of the concentration of CP can be used as an 

indicator of heat damage in feed ingredients. Thus, it is expected that the greater the degree of 

heat damage, is the lower the Lys:CP ratio will be (Cozannet et al., 2010; Skiba et al., 2011). 

Results observed in these experiments for both sunflower meal and cottonseed meal support this 

hypothesis. 

Effects of Autoclaving on AA Digestibility 

 Values for the SID of CP and for the SID of AA determined for non-autoclaved 

sunflower meal are in close agreement with values reported by NRC (2012). Likewise, the SID 

of CP and SID of AA determined for non-autoclaved cottonseed meal concur with the SID 

values presented in NRC (2012). The SID of Lys in sunflower meal has been reported in a range 

from 75.8 to 80.0% , which is narrower than the range observed in this experiment, although it 

encompasses some of the values we observed (Jondreville et al., 2000; González-Vega and Stein, 

2012). Values for the SID of Lys in cottonseed meal reported by NRC (2012) ranged from 52.15 

to 73.85% and the SID of Lys determined for cottonseed meal in this experiment ranged from 
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49.75 to 66.21%. This indicates that some of the variation in the SID of Lys in commercial 

sources of sunflower meal and cottonseed meal may be a result of differences in heat processing 

of the meals. The observed decrease in the SID of AA in both sunflower and cottonseed meals 

resulting from increasing time of autoclaving was expected, and this also has been observed in 

DDGS and SBM (Fontaine et al., 2007; González-Vega et al., 2011). Heat processing reduces 

the digestibility of AA because AA and protein undergoes Maillard reactions to form insoluble 

complexes and cross-linking proteins (Nursten, 2005). These reactions, therefore, may yield AA 

and protein containing products that are less accessible to digestive enzymes. Consequently, the 

overall digestibility of CP and AA is reduced. 

Regression Equations 

 The automatic search procedures for model selection, when developing regression 

equations, play a pivotal role on the selection of a “best” final model for a given data set (Kutner 

et al., 2004). In the present experiments, we used the forward selection method, which can be 

considered a simplified version of the forward stepwise selection method (Kutner et al., 2004). 

From the regression equations developed to predict the concentration of SID AA in sunflower 

meal, there was a clear pattern indicating that the concentrations of NDF in combination with the 

concentrations of AA were relatively accurate predictors. This observation, however, must be 

interpreted with caution as the concentration of NDF in different sources of sunflower meal may 

differ because of factors other than heat damage, such as genetic background of the feed 

ingredient. Thus, the equations developed from this experiment may be used to predict the 

concentration of SID AA within a source of sunflower meal if it is known that the only source of 

variation in the nutrient composition of sunflower meal is due to heat processing. Nevertheless, 
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the present results indicate that the concentration of NDF, AA, and the Lys:CP ratio in sunflower 

meal may serve as indicators of heat damage.  

Regression equations developed to predict the concentration of SID AA in cottonseed 

meal indicate that the concentration of ADIN alone or combined with other nutrients may be 

used, although, a relatively low r
2
 was calculated for most equations. Nevertheless, the SID Lys 

in cottonseed meal may be predicted from the concentration of ADIN, although a validation of 

the equation is required using other data sets. 

The concentration of reactive Lys, calculated from the concentration of furosine, has been 

reported to be a predictor of the concentration of SID Lys in DDGS (Kim et al., 2012). Our 

results are in agreement with these observations, but reactive Lys was not shown to be the best 

predictor for the concentration of SID Lys in sunflower meal or cottonseed meal in these 

experiments.  

Conclusions 

 Results of these experiments demonstrate that the concentrations of analyzed fiber 

components in sunflower meal and cottonseed meal are increased as a result of heat damage. As 

previously demonstrated, the concentrations and digestibility of AA is reduced as the degree of 

heat damage increases and Lys is the AA most affected by heat damage, but the AID and SID of 

all other AA may also be reduced by severe heat damage. Thus, heat processing of sunflower 

meal and cottonseed meal should be optimized to prevent reducing the digestibility of AA. 

Regression equations that use the concentrations of NDF, ADIN, and AA may be used to 

identify the nutritional quality of heat-damaged sunflower meal and cottonseed meal, but the 

practical use of the regression equations developed in the current work need to be validated.   
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TABLES 

 

Table 5.1. Chemical composition of sunflower meal and cottonseed meal used in Exp. 1 and 2, respectively 

  Sunflower meal (Exp.1)  Cottonseed meal (Exp. 2) 

    Autoclaved at 130°C    Autoclaved at 130°C 

Item  Non-

autoclaved 

 20 min  40 min  60 min  Non-

autoclaved 

 15 min  35 min  60 min 

DM, %  91.92  89.31  90.05  88.79  90.98  90.12  87.04  87.57 

Ash, %  8.10  7.68  8.11  7.65  9.21  8.52  8.14  8.64 

CP, %  35.92  36.55  36.11  35.35  41.68  42.20  42.23  42.26 

ADF, %  21.60  22.80  19.87  24.12  18.78  16.89  17.92  17.96 

NDF, %  31.90  34.88  34.90  43.21  26.19  27.12  27.99  29.83 

Lignin, %  5.59  5.42  5.66  6.73  5.52  5.73  6.49  6.68 

ADIN, %  0.22  0.18  0.25  0.28  0.20  0.25  0.29  0.27 

Reducing sugars, %  4.64  4.43  4.18  3.74  3.59  3.47  1.76  2.31 

Free gossypol, %  -  -  -  -  < 0.02  < 0.02  < 0.02  < 0.02 

Total gossypol, %  -  -  -  -  0.65  0.60  0.48  0.36 

AEE,
1 

%  1.93  0.88  1.82  1.57  2.60  1.47  1.05  1.31 

Ca, %  0.36  0.34  0.35  0.33  0.22  0.26  0.22  0.22 

P, %  1.28  1.26  1.28  1.12  1.19  1.23  1.19  1.16 

Lys:CP ratio
2
   3.42  2.98  2.99  2.77  3.93  3.77  3.60  3.60 
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Table 5.1. (Cont.)                 

Furosine  0.013  0.012  0.021  0.030  0.027  0.040  0.040  0.030 

Reactive Lys
3
  1.21  1.08  1.05  0.94  1.61  1.54  1.47  1.48 

L*
4 

 53.83  51.74  49.65  51.84  51.34  48.02  48.03  45.56 

Indispensable AA, %                 

  Arg  2.74  2.50  2.61  2.44  4.45  4.43  4.23  4.31 

  His  0.84  0.78  0.83  0.81  1.16  1.14  1.13  1.16 

  Ile  1.39  1.31  1.36  1.38  1.28  1.29  1.29  1.33 

  Leu  2.17  2.03  2.16  2.13  2.35  2.39  2.38  2.46 

  Lys  1.23  1.09  1.08  0.98  1.64  1.59  1.52  1.52 

  Met  0.75  0.69  0.74  0.72  0.61  0.63  0.62  0.64 

  Phe  1.56  1.45  1.55  1.53  2.14  2.17  2.17  2.23 

  Thr  1.24  1.17  1.25  1.21  1.27  1.31  1.30  1.34 

  Trp  0.51  0.46  0.44  0.43  0.50  0.51  0.49  0.48 

  Val  1.71  1.60  1.68  1.68  1.77  1.77  1.78  1.85 

 All indispensable AA  14.14  13.08  13.70  13.31  17.17  17.21  16.91  17.32 

Dispensable AA, %                 

  Ala  1.49  1.39  1.48  1.47  1.56  1.59  1.58  1.63 

  Asp  3.04  2.84  3.03  2.97  3.54  3.61  3.54  3.54 

  Cys  0.55  0.51  0.52  0.47  0.66  0.66  0.63  0.64 

  Glu  6.41  5.97  6.40  6.29  7.75  7.91  7.87  8.05 

  Gly  1.98  1.84  1.96  1.94  1.70  1.72  1.71  1.76 
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Table 5.1. (Cont.)                 

  Pro  1.48  1.40  1.47  1.46  1.57  1.55  1.55  1.62 

  Ser  1.41  1.32  1.43  1.37  1.68  1.74  1.71  1.76 

All dispensable AA  16.36  15.27  16.29  15.97  18.46  18.78  18.59  19.00 

Total AA  30.50  28.35  29.99  29.28  35.63  35.99  35.50  36.32 

 
1
AEE = acid hydrolyzed ether extract. 

2
Calculated by expressing the concentration of Lys in each ingredient as a percentage of the concentration of CP (Stein et al., 

2009). 

 
3
Reactive Lys (%) = [Lys (%) – (Furosine (%) ÷ 0.32 × 0.40)]; Pahm et al., 2008.

 

4
L* = lightness. 
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Table 5.2. Ingredient composition of experimental diets (as-fed basis), Exp. 1 and 2 

  Sunflower meal (Exp.1)  Cottonseed meal (Exp.2)   

    Autoclaved at 130°C    Autoclaved at 130°C   

Ingredient, %  Non-autoclaved  20 min  40 min  60 min  Non-autoclaved  15 min  35 min  60 min  N-free
1
  

Sunflower meal  42.00  42.00  42.00  42.00  -  -  -  -  - 

Cottonseed meal  -  -  -  -  32.00  32.00  32.00  32.00  - 

Cornstarch  42.00  42.00  42.00  42.00  41.97  41.97  41.97  41.97  67.00 

Sucrose  10.00  10.00  10.00  10.00  20.00  20.00  20.00  20.00  20.00 

Solka floc
2 

 -  -  -  -  -  -  -  -  5.00 

Soybean oil  3.40  3.40  3.40  3.40  3.50  3.50  3.50  3.50  4.00 

Ground limestone  0.85  0.85  0.85  0.85  0.90  0.90  0.90  0.90  0.80 

Monocalcium phosphate  0.65  0.65  0.65  0.65  0.50  0.50  0.50  0.50  1.60 

Sodium chloride  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40 

Ferrous sulfate  -  -  -  -  0.03  0.03  0.03  0.03  - 

Magnesium oxide  -  -  -  -  -  -  -  -  0.10 

Potassium carbonate  -  -  -  -  -  -  -  -  0.40 

Chromic oxide  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40 

Vitamin-mineral premix
3 

 0.30  0.30  0.30  0.30  0.30  0.30  0.30  0.30  0.30 

 
1
A N-free diet was produced separately for Exp. 1 and 2.

 

2
Fiber Sales and Development Corp., Urbana, OH. 

3
Provided the following per kilogram of complete diet: Vitamin A as retinyl acetate, 11,128 IU; vitamin D3 as cholecalciferol, 

2,204 IU; vitamin E as DL-alphatocopheryl acetate, 66 IU; vitamin K as menadionenicotinamide bisulfite, 1.42 mg; thiamin as 

thiamine mononitrate, 0.24 mg; riboflavin, 6.58 mg;  pyridoxine as pyridoxine hydrochloride, 0.24 mg; vitamin B12, 0.03 mg; D-

pantothenic acid as D-calcium pantothenate, 23.5 mg; niacin as nicotinamide, 1.0 mg, and nicotinic acid, 43.0 mg; folic acid, 1.58 mg; 

biotin, 0.44 mg; Cu, 10 mg as copper sulfate; Fe, 125 mg as iron sulfate; I, 1.26 mg as potassium iodate; Mn, 60 mg as manganese 

sulfate; Se, 0.3 mg as sodium selenite; and Zn, 100  mg as zinc oxide. 
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Table 5.3. Analyzed nutrient composition of experimental diets (as-fed basis), Exp. 1 and 2 

  Sunflower meal (Exp.1)  Cottonseed meal (Exp. 2) 

    Autoclaved at 130°C    Autoclaved at 130°C 

Item  

Non-

autoclaved 

 20 min  40 min  60 min  

Non-

autoclaved 

 15 min  35 min  60 min 

DM, %  91.39  90.90  90.91  90.70  92.66  91.93  91.98  92.40 

CP, %  13.91  14.55  15.00  14.32  14.01  12.45  13.56  13.64 

Indispensable AA, %                 

  Arg  1.21  1.12  1.19  1.00  1.49  1.28  1.30  1.37 

  His  0.38  0.35  0.38  0.33  0.39  0.33  0.34  0.36 

  Ile  0.61  0.59  0.62  0.56  0.44  0.38  0.39  0.42 

  Leu  0.98  0.94  1.01  0.90  0.80  0.72  0.74  0.80 

  Lys  0.54  0.50  0.50  0.41  0.57  0.47  0.47  0.48 

  Met  0.33  0.30  0.32  0.27  0.21  0.19  0.19  0.20 

  Phe  0.70  0.66  0.72  0.64  0.73  0.65  0.67  0.72 

  Thr  0.56  0.53  0.57  0.52  0.43  0.39  0.40  0.43 
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Table 5.3. (Cont.)                 

  Trp  0.20  0.21  0.20  0.18  0.18  0.14  0.16  0.16 

  Val  0.75  0.72  0.77  0.69  0.61  0.52  0.54  0.58 

All indispensable AA  6.26  5.92  6.28  5.50  5.85  5.07  5.20  5.52 

Dispensable AA, %                 

  Ala  0.67  0.64  0.69  0.62  0.54  0.49  0.50  0.54 

  Asp  1.37  1.30  1.41  1.26  1.21  1.09  1.11  1.19 

  Cys  0.25  0.23  0.24  0.21  0.23  0.20  0.20  0.21 

  Glu  2.88  2.74  2.97  2.66  2.58  2.33  2.40  2.58 

  Gly  0.88  0.84  0.90  0.81  0.57  0.51  0.53  0.57 

  Pro  0.67  0.64  0.70  0.62  0.51  0.46  0.48  0.51 

  Ser  0.64  0.61  0.66  0.59  0.57  0.53  0.54  0.58 

All dispensable AA  7.36  7.00  7.57  6.77  6.21  5.61  5.76  6.18 

Total AA  13.62  12.92  13.85  12.27  12.06  10.68  10.96  11.70 

1
The concentrations (%) of DM and CP in the N-free diet were 92.16 and 0.58 in Exp. 1 and 91.94 and 0.24 in Exp. 2, 

respectively.
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Table 5.4. Apparent ileal digestibility of CP and AA in sunflower meal subjected to increasing time of autoclaving by growing pigs 

(Exp.1)
1 

  Sunflower meal     

    Autoclaved at 130° C  SEM  P-value
2 

Item  Non-autoclaved  20 min  40 min  60 min    Linear Quadratic 

CP, %  69.48  70.06  64.67  57.91  2.1  < 0.01 0.41 

Indispensable AA, %              

  Arg  87.95  87.15  84.63  81.02  1.0  < 0.01 0.88 

  His  81.54  80.13  78.53  71.63  1.2  < 0.01 0.23 

  Ile  81.64  81.44  79.96  75.02  1.1  < 0.01 0.56 

  Leu  82.05  81.70  80.32  75.30  1.1  < 0.01 0.53 

  Lys  73.88  71.29  64.87  51.40  2.1  < 0.01 0.66 

  Met  89.16  88.34  87.85  83.41  0.7  < 0.01 0.08 

  Phe  84.28  84.07  83.61  79.57  1.0  < 0.01 0.34 

  Thr  74.27  73.28  70.72  63.31  1.6  < 0.01 0.58 

  Trp  77.01  78.55  74.41  69.33  1.5  < 0.01 0.37 
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Table 5.4. (Cont.)              

  Val  80.63  80.29  78.65  73.26  1.2  < 0.01 0.56 

  Mean  82.01  81.14  79.26  73.34  1.1  < 0.01 0.43 

Dispensable AA, %              

  Ala  73.47  73.19  69.16  60.52  2.1  < 0.01 0.89 

  Asp  79.08  77.37  74.11  65.13  1.3  < 0.01 0.34 

  Cys  75.93  74.81  70.39  62.16  2.0  < 0.01 0.95 

  Glu  87.68  87.17  85.62  81.76  1.0  < 0.01 0.71 

  Gly  54.57  57.07  44.61  36.02  4.8  < 0.01 0.28 

  Ser  74.19  72.94  71.48  64.22  1.2  < 0.01 0.26 

  Mean  74.15  73.84  69.72  62.24  1.7  < 0.01 0.94 

                  1
Data are means of 10 observations. 

 
2
Linear and quadratic effects of time of autoclaving.  
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Table 5.5. Standardized ileal digestibility of CP and AA in sunflower meal subjected to increasing time of autoclaving by growing 

pigs (Exp. 1)
1 

  Sunflower meal     

    Autoclaved at 130° C  SEM  P-value
2
 

Item  Non-autoclaved  20 min  40 min  60 min    Linear Quadratic 

CP, %  82.66  82.61  76.84  70.62  2.1  < 0.01 0.35 

Indispensable AA, %              

  Arg  92.53  92.06  89.26  86.52  1.0  < 0.01 0.55 

  His  86.94  85.96  83.90  77.80  1.2  < 0.01 0.48 

  Ile  87.58  87.55  85.77  81.44  1.1  < 0.01 0.83 

  Leu  88.18  88.06  86.23  81.92  1.1  < 0.01 0.85 

  Lys  83.15  81.24  74.83  63.52  2.1  < 0.01 0.96 

  Met  92.80  92.32  91.58  87.82  0.7  < 0.01 0.25 

  Phe  89.80  89.89  88.95  85.56  1.0  < 0.01 0.68 

  Thr  84.63  84.17  80.84  74.38  1.6  < 0.01 0.96 

  Trp  85.39  86.49  82.75  78.58  1.5  < 0.01 0.40 
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Table 5.5. (Cont.)              

  Val  87.17  87.06  84.99  80.32  1.2  < 0.01 0.88 

  Mean  88.49  87.95  85.68  80.66  1.1  < 0.01 0.79 

Dispensable AA, %              

  Ala  84.88  85.08  80.19  72.76  2.1  < 0.01 0.69 

  Asp  85.37  83.96  80.18  71.92  1.3  < 0.01 0.62 

  Cys  84.55  84.14  79.33  72.35  2.0  < 0.01 0.78 

  Glu  91.61  91.28  89.41  85.99  1.0  < 0.01 0.99 

  Gly  73.76  77.06  63.36  52.92  3.9  < 0.01 0.17 

  Ser  83.17  82.31  80.14  73.89  1.2  < 0.01 0.56 

  Mean  83.89  84.02  79.07  71.94  1.7  < 0.01 0.59 

1
Data are means of 10 observations; Values for standardized ileal digestibility were calculated by correcting apparent ileal 

digestibility values for basal endogenous losses (g/kg of DMI), which were determined by feeding pigs a N-free diet: CP, 20.08; Arg, 

0.61; His, 0.22; Ile, 0.40; Leu, 0.66; Lys, 0.55; Met, 0.13; Phe, 0.42; Thr, 0.63; Trp, 0.18; Val, 0.54; Ala, 0.84; Asp, 0.94, Cys, 0.24; 

Glu, 1.24; Gly, 1.85; and Ser, 0.63. 

 
2
Linear and quadratic effects of time of autoclaving.
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Table 5.6. Linear regressions to predict the concentration (%) of standardized ileal digestible (SID) AA in sunflower meal fed to pigs
1
 

  Intercept  Independent variables
2
    

Dependent 

variable 

 Estimate SE P-value  Variable 1 Estimate SE P-value 

Variable 

2 

Estimate SE P-value 

 

RMSE
3
 

Adjusted 

r
2
 

SID Arg  -0.99 0.30 < 0.01  Arg 0.89 0.15 < 0.01 Lys:CP 0.32 0.09 < 0.01  0.08 0.77 

SID His  0.45 0.17 < 0.05  His 0.60 0.19 < 0.01 NDF -0.07 0.001 < 0.01  0.03 0.67 

SID Ile  0.64 0.29 < 0.05  Ile 0.59 0.29 < 0.01 NDF -0.07 0.001 < 0.01  0.04 0.43 

SID Leu  0.99 0.44 < 0.05  Leu 0.61 0.20 < 0.01 NDF -0.01 0.003 < 0.01  0.07 0.49 

SID Lys  -0.75 0.12 < 0.01  RL 1.49 0.11 < 0.01 - - - -  0.07 0.83 

  -1.00 0.12 < 0.01  Lys 0.54 0.31 0.08 RS 0.30 0.08 < 0.01  0.06 0.85 

SID Met  0.20 0.08 < 0.05  Met 0.81 0.10 < 0.01 NDF -0.003 0.001 < 0.01  0.01 0.81 

SID Phe  0.46 0.26 0.08  Phe 0.73 0.16 < 0.01 NDF -0.01 0.002 < 0.01  0.04 0.50 

SID Thr  1.45 0.08 < 0.01  NDF -0.01 0.002 < 0.01 - - - -  0.06 0.48 

SID Trp  -0.23 0.05 < 0.01  Trp 0.53 0.23 < 0.05 Lys:CP 0.12 0.04 < 0.01  0.02 0.81 

SID Val  1.59 0.11 < 0.01  NDF -0.03 0.005 < 0.01 Lignin 0.13 0.05 < 0.05  0.06 0.46 

1
n = 40 observations; for all models P < 0.01. 

2
RS = reducing sugars; RL = Reactive Lys (%) = [Lys (%) – (Furosine (%) ÷ 0.32 × 0.40)]. 

3
RMSE = root mean square error.
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Table 5.7. Apparent ileal digestibility of CP and AA in cottonseed meal subjected to increasing time of autoclaving by growing pigs 

(Exp.2)
1 

  Cottonseed meal     

    Autoclaved at 130° C  SEM  P-value
2 

Item  Non-autoclaved  15 min  35 min  60 min    Linear Quadratic 

CP, %  61.27  52.63  51.15  53.65  2.4  < 0.01 < 0.01 

Indispensable AA, %              

  Arg  82.20  77.29  74.63  77.84  1.3  < 0.01 < 0.01 

  His  75.51  67.87  64.44  68.09  1.2  < 0.01 < 0.01 

  Ile  63.95  54.47  51.94  57.87  1.6  0.04 < 0.01 

  Leu  66.82  60.22  57.84  63.19  1.5  0.15 < 0.01 

  Lys  59.06  45.81  41.14  45.63  1.8  < 0.01 < 0.01 

  Met  67.60  61.48  58.94  63.93  1.4  0.10 < 0.01 

  Phe  77.41  72.12  69.92  74.10  1.2  0.11 < 0.01 

  Thr  58.35  50.99  47.35  52.95  1.8  0.06 < 0.01 

  Trp  67.87  55.31  57.12  59.10  1.6  0.01 < 0.01 
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Table 5.7. (Cont.)              

  Val  67.43  58.61  56.39  62.01  1.5  0.05 < 0.01 

  Mean  71.17  63.88  61.13  65.53  1.2  < 0.01 < 0.01 

Dispensable AA, %              

  Ala  52.74  44.20  40.74  48.76  2.6  0.12 < 0.01 

  Asp  70.98  62.98  55.95  60.01  1.4  < 0.01 < 0.01 

  Cys  70.57  64.69  60.67  64.42  1.6  0.01 < 0.01 

  Glu  81.02  76.29  73.26  76.35  1.1  < 0.01 < 0.01 

  Gly  25.59  16.04  9.31  22.66  6.7  0.42 < 0.01 

  Ser  66.47  62.40  58.52  63.24  1.3  0.07 < 0.01 

  Mean  61.23  54.42  49.74  55.84  1.9  < 0.01 < 0.01 

                  1
Data are means of 10 observations. 

 
2
Linear and quadratic effects of time of autoclaving.  
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Table 5.8. Standardized ileal digestibility of CP and AA in cottonseed meal subjected to increasing levels of heat treatment by 

growing pigs (Exp. 2)
1 

  Cottonseed meal     

    Autoclaved at 130° C  SEM  P-value
2
 

Item  Non-autoclaved  15 min  35 min  60 min    Linear Quadratic 

CP, %  76.01  69.08  66.27  68.75  2.4  < 0.01 < 0.01 

Indispensable AA, %              

  Arg  88.39  84.44  81.67  84.55  1.3  < 0.01 < 0.01 

  His  80.92  74.22  70.61  73.94  1.2  < 0.01 < 0.01 

  Ile  70.71  62.23  59.51  64.93  1.6  0.04 < 0.01 

  Leu  73.14  67.18  64.63  69.49  1.5  0.13 < 0.01 

  Lys  66.21  54.42  49.75  54.10  1.8  < 0.01 < 0.01 

  Met  71.91  66.21  63.67  68.44  1.4  0.12 < 0.01 

  Phe  81.83  77.05  74.70  78.57  1.2  0.10 < 0.01 

  Thr  70.53  64.32  60.34  65.09  1.8  0.05 < 0.01 

  Trp  75.48  65.01  65.62  67.64  1.6  0.02 < 0.01 
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Table 5.8. (Cont.)              

  Val  74.28  66.59  64.08  69.20  1.5  0.05 < 0.01 

  Mean  75.34  68.20  65.49  69.56  1.4  0.01 < 0.01 

Dispensable AA, %              

  Ala  66.41  59.15  55.40  62.40  2.6  0.09 < 0.01 

  Asp  77.44  70.08  62.93  66.55  1.4  < 0.01 < 0.01 

  Cys  78.38  73.61  69.59  72.96  1.6  0.02 < 0.01 

  Glu  84.83  80.48  77.32  80.15  1.1  < 0.01 < 0.01 

  Gly  63.03  57.55  49.27  59.99  6.7  0.27 < 0.01 

  Ser  76.42  73.02  68.95  72.99  1.3  0.05 < 0.01 

  Mean  74.42  68.96  63.91  69.10  1.9  < 0.01 < 0.01 

1
Data are means of 10 observations; Values for standardized ileal digestibility were calculated by correcting apparent ileal 

digestibility values for basal endogenous losses (g/kg of DMI), which were determined by feeding pigs a N-free diet: CP, 22.29; Arg, 

1.00; His, 0.23; Ile, 0.32; Leu, 0.55; Lys, 0.44; Met, 0.10; Phe, 0.35; Thr, 0.57; Trp, 0.15; Val, 0.45; Ala, 0.80; Asp, 0.84, Cys, 0.19; 

Glu, 1.06; Gly, 2.30; and Ser, 0.61. 

 
2
Linear and quadratic effects of time of autoclaving.
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Table 5.9. Linear regressions to predict the concentration (%) of standardized ileal digestible (SID) AA in cottonseed meal fed to 

pigs
1
 

  Intercept  Independent variables
2
    

Dependent 

variable 

 Estimate SE P-value  Variable 1 Estimate SE P-value 

Variable 

2 

Estimate SE P-value 

 

RMSE
3
 

Adjusted 

r
2
 

SID Arg  -4.48 1.27 < 0.01  Arg 1.87 0.29 < 0.01 - - - -  0.16 0.53 

SID His  1.06 0.10 < 0.01  Lignin 0.06 0.03 0.04 ADIN -2.18 0.39 < 0.01  0.04 0.62 

SID Ile  5.49 1.49 < 0.01  Lys:CP -0.92 0.32 < 0.01 ADIN -4.95 1.30 < 0.01  0.07 0.40 

SID Leu  0.78 0.44 0.08  NDF 0.06 0.02 < 0.01 ADIN -3.22 0.77 < 0.01  0.11 0.30 

SID Lys  -2.42 0.41 < 0.01  RL 2.17 0.27 < 0.01 - - - -  0.09 0.65 

  1.81 0.11 < 0.01  ADIN -3.67 0.42 < 0.01 - - - -  0.09 0.68 

SID Met  0.21 0.11 0.06  NDF 0.01 0.005 < 0.01 ADIN -0.78 0.19 < 0.01  0.03 0.28 

SID Phe  1.01 0.33 < 0.01  NDF 0.05 0.02 < 0.01 ADIN -2.38 0.57 < 0.01  0.08 0.30 

SID Thr  0.56 0.29 0.06  NDF 0.03 0.01 0.05 ADIN -1.75 0.50 < 0.01  0.07 0.23 

SID Trp  -0.08 0.11 0.13  ADF 0.02 0.005 < 0.05 RS 0.004 0.005 < 0.05  0.02 0.28 

SID Val  8.27 1.87 < 0.01  Lys:CP -1.40 0.39 < 0.01 ADIN -7.19 1.62 < 0.01  0.08 0.43 

1
n = 40 observations; for all models P < 0.01. 

2
ADIN = acid detergent insoluble nitrogen; RS = reducing sugars; RL = Reactive Lys (%) = [Lys (%) – (Furosine (%) ÷ 0.32 × 

0.40)]. 
3
RMSE = root mean square error.
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CHAPTER 6 

EFFECTS OF DIET FORMULATION ON PERFORMANCE OF WEANLING PIGS 

FED HEAT DAMAGED SOYBEAN MEAL OR HEAT DAMAGED DISTILLERS 

DRIED GRAINS WITH SOLUBLES 

 

ABSTRACT: Two experiments were conducted to investigate if adjustments in diet 

formulations based on either total analyzed AA or standardized ileal digestible (SID) AA may be 

used to eliminate negative effects of including heat-damaged soybean meal (SBM) or heat-

damaged distillers dried grains with solubles (DDGS) in diets fed to weanling pigs. In Exp. 1, 4 

corn-SBM diets were formulated. Diet 1 contained non-autoclaved SBM, and this diet was 

formulated on the basis of analyzed AA concentrations and using SID values from the 

AminoDat
®
 (2006) database. Three additional diets were formulated using autoclaved SBM, 

rather than the non-autoclaved SBM. Diet 2 was formulated similar to Diet 1, except that the 

non-autoclaved SBM was replaced by the autoclaved SBM. Diet 3 was formulated by adjusting 

AA inclusion in the diet on the basis of analyzed total AA concentrations in the autoclaved SBM 

and published SID values (AminoDat
®
, 2006). Diet 4 also contained autoclaved SBM, but the 

formulation of this diet was adjusted on the basis of analyzed AA in the autoclaved SBM and 

SID values that were adjusted according to the degree of heat damage in this source of SBM. 

Pigs (160; initial BW: 10.4 ± 1.3 kg) were allotted to 4 treatments with 8 replicate pens per 

treatment in a randomized complete block design. The final BW on d 21 for pigs fed either Diet 

3
 
or Diet 4 was less (P < 0.05) than the final BW of pigs fed Diet 1, but greater (P < 0.05) than 

the final BW of pigs fed Diet 2. The ADG of pigs fed Diet 1 was greater (P < 0.05) than the 

ADG of pigs fed the other diets, but pigs fed either Diet 3
 
or Diet 4 had greater (P < 0.05) ADG 

than pigs fed Diet 2. The G:F was greater (P < 0.05) for pigs fed Diet 1 compared with pigs fed 
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the other diets. Pigs fed Diet 4 had greater (P < 0.05) G:F than pigs fed Diet 2. In Exp. 2, 144 

pigs (initial BW: 9.9 ± 1.5 kg) were allotted to 4 diets with 8 replicate pens per diet. The 4 diets 

contained corn, SBM (8.5%), and DDGS (autoclaved or not autoclaved; 22%), and were 

formulated using the concepts described for Exp. 1, except that heat-damaged DDGS but not 

heat-damaged SBM, was used in the diets. Pigs fed Diet 2 or Diet 4 had greater (P < 0.05) ADFI 

than pigs fed Diet 1, but no differences in ADFI were observed among pigs fed the diets 

containing autoclaved DDGS. Pigs fed Diet 1 had greater (P < 0.05) G:F than pigs fed the other 

diets, but no differences were observed for G:F among pigs fed diets containing autoclaved 

DDGS. Results demonstrate that the negative effects of heat damage may be ameliorated if the 

reduced concentration as well as the reduced digestibility of AA in heat-damaged SBM is 

corrected. 

Diets for weaned pigs containing up to 22% of heat-damaged DDGS reduces performance of 

pigs compared with diets containing DDGS that has not been heat-damaged, but correction for 

the reduced concentration and the reduced digestibility of AA in heat-damaged DDGS may not 

be of practical importance for weaned pigs. 

Key words: distillers dried grains with solubles, soybean meal, weaned pigs 

 

INTRODUCTION 

Successful feed formulation and nutrition of farm animals requires accurate information 

about the nutritional value of the feed ingredients used. Whereas several nutritional criteria are 

routinely considered in feed ingredients evaluation, the ability to assess the impact of heat 

damage that occurs during processing of particular ingredients has received less attention. The 

digestibility of AA by growing pigs in certain ingredients decreases gradually with increasing 



 

133 

 

degree of heat treatment (Fontaine et al., 2007; Pahm et al., 2008; González-Vega et al. 2011). If 

this reduction is not considered in feed formulation, use of heat-damaged ingredients may result 

in reduced animal performance. Whereas AA analysis of raw materials by rapid methods such as 

NIR may identify AA losses in heat-damaged ingredients, which may be considered in diet 

formulation, adjustment of diets for changes in AA digestibility is less trivial. Lack of 

adjustments in diets containing heat-damaged ingredients, however, may result in reduced 

performance of pigs. It is, therefore, necessary that the degree of heat damage in a feed 

ingredient is accounted for in diet formulation. Adjustments of values for the standardized ileal 

digestibility (SID) of AA in heat-damaged feed ingredients, to ameliorate reduced performance 

of chicks fed heat-damaged SBM, have been investigated (Evonik, 2010). In contrast, effects of 

formulating diets containing heat-damaged soybean meal (SBM) or heat-damaged distillers dried 

grains with solubles (DDGS) to pigs on the basis of adjustments of the SID of AA according to 

the degree of heat damage and its effects on performance have not been determined. We 

hypothesized that the negative effects of feeding heat-damaged SBM or DDGS to weanling pigs 

may be reduced if values for the SID AA used in diet formulation are adjusted according to the 

degree of heat damage of the ingredients. Therefore, the objectives of the present experiments 

were to investigate if adjustments in diet formulations based on either total analyzed AA or SID 

AA may be used to eliminate negative effects of including heat-damaged SBM or DDGS in diets 

fed to weanling pigs. 
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MATERIALS AND METHODS  

Protocols for the experiments were reviewed and approved by the Institutional Animal 

Care and Use Committee at the University of Illinois. Pigs used in both experiments were the 

offspring of G-performer boars mated to F-25 females (Genetiporc, Alexandria, MN). 

Exp. 1, Use of Heat Damaged Soybean Meal 

Diet formulation. Dehulled SBM was procured from Solae (Gibson City, IL) and separated into 

2 batches. One batch was not autoclaved, whereas the other batch was autoclaved at 125°C for 

60 min (Table 6.1). Four corn-SBM diets were formulated to contain similar concentrations of 

CP and GE (Table 6.2). Diet 1 contained the non-autoclaved SBM and this diet was formulated 

on the basis of analyzed AA concentrations and using SID values from the AminoDat
®
 (2006) 

database. Values for the SID of AA in SBM in the AminoDat
®
 (2006) database are the average 

of SID values from 95 digestibility experiments. Three additional diets were formulated using 

the autoclaved SBM rather than the non-autoclaved SBM. Diet 2 was formulated exactly like 

Diet 1, except that the non-autoclaved SBM was replaced by the autoclaved SBM. Values for the 

SID AA used in the formulation of Diet 2 were the same values used in the formulation of Diet 

1. Diet 3 was formulated by adjusting AA inclusion in the diet on the basis of analyzed total AA 

concentrations in the autoclaved SBM and published SID values (AminoDat
®
, 2006). 

Adjustments for the SID AA in Diet 3 were achieved by adding increased quantities of 

crystalline Lys, Met, Thr, and Trp compared with Diets 1 and 2. Diet 4 also contained autoclaved 

SBM, but the formulation of this diet was adjusted on the basis of analyzed AA in the autoclaved 

SBM and SID values that were adjusted according to the degree of heat damage in this source of 

SBM. Crystalline Lys, Met, Thr, and Trp were also added to diet 4, but in greater amounts than 
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in Diet 3. The calculated SID Lys for Diets 1, 2, 3, and 4 were 1.00, 0.88, 0.95, and 1.00%, 

respectively. 

Animals, Experimental Design, and Housing. A total of 160 pigs (initial BW: 10.4 ± 1.3 kg) 

weaned at approximately 21 d of age and fed a common phase 1 diet for 14 d after weaning, 

were allotted to 4 dietary treatments with 8 replicate pens per treatment in a randomized 

complete block design. Four replicates of each treatment consisted of a pen with 3 barrows and 2 

gilts whereas the other 4 replicates of each treatment consisted of a pen with 2 barrows and 3 

gilts. Pigs were fed the treatment diets for 21 d. Pigs were housed in an environmental controlled 

room in pens (1.2 × 1.2 m) with fully slatted floors. Feed and water were available at all times. 

Sample Analyses, Performance Measurements, and Data Processing. Ingredients and diets 

were analyzed for DM by drying in an oven at 103°C for 4 h (Method 935.29; AOAC 

International), Ca and P (Method 985.01; AOAC International, 2007), ADF (Method 973.18; 

AOAC International, 2007), NDF (Holst, 1973), CP according to the Dumas procedure (Method 

968.06; AOAC International, 2007), and AA by ion-exchange chromatography with post-column 

derivatization with ninhydrin. Cysteine and Met were oxidized with performic acid, which was 

neutralized with Na metabisulfite (Llames and Fontaine, 1994; Commission Directive, 1998). 

Amino acids were liberated from the protein by hydrolysis with 6 N HCL for 24 h at 110°C and 

quantified with the internal standard by measuring the absorption of reaction products with 

ninhydrin at 570 nm. Tryptophan was determined by HPLC with fluorescence detection 

(extinction 280 nm, emission 356 nm), after alkaline hydrolysis with barium hydroxide 

octahydrate for 20 h at 110°C (Commission Directive, 2000). 

The individual BW of pigs was recorded at the beginning of the experiment and every 7-

d thereafter. The amount of feed provided to each pen was recorded daily. On the last day of the 



 

136 

 

experiment, feeders were weighed and emptied at 700 h, and at 1300 h blood samples from the 

heaviest barrow and the heaviest gilt in each pen were collected via jugular venipuncture in 

EDTA tubes. Tubes were stored on ice and centrifuged (2,000 rpm at 5°C for 15 min). Plasma 

was then collected from the centrifuged tubes and analyzed for plasma urea nitrogen (PUN) on 

an Olympus AU680 Chemistry Analyzer (Olympus Life Science Research Europa GmbH, 

Sauerbruchstr., Munich, Germany). At the conclusion of the experiment, values for ADG, ADFI, 

and G:F for each 7-d period and for the overall experimental period were calculated. The average 

value for PUN for each pen was used in the statistical analysis. The ratio of SID Lys/kg of BW 

gain was calculated by the following equation: 

SID Lys/BW gain = SID Lys intake (g/d) / ADG (kg). 

Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). 

The UNIVARIATE procedure of SAS was used to verify normality of the data and to test for the 

presence of outliers. The model included dietary treatment as the fixed effect, whereas 

replication was included as the random effect. The pen was the experimental unit and 

significance among means was assessed using an alpha level of 0.05. 

Exp. 2, Use of Heat Damaged Distillers Dried Grains with Solubles 

Diet formulation. Distillers dried grains with solubles was sourced from Poet LLC (North 

Manchester, IN) and separated into 2 batches. One batch was not autoclaved, whereas the other 

batch was autoclaved at 125°C for 60 min (Table 6.1). Four diets based on corn, SBM (8.5%), 

and DDGS (22%) were formulated following the same concepts as described for Exp. 1 (Table 

6.3). Adjustments for the concentration of SID AA in Diet 3 were achieved by adding crystalline 

Lys, Met, Thr, Trp, Val, and Ile to a diet that was otherwise similar to Diet 2. Crystalline Lys, 
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Met, Thr, Trp, Val, and Ile were also added to Diet 4, but in greater quantities than in Diet 3. The 

calculated SID Lys for Diets 1, 2, 3, and 4 were 1.00, 0.95, 0.97, and 1.00%, respectively. 

Animals, Experimental Design, and Housing. A total of 144 pigs (initial BW: 9.9 ± 1.5 kg) that 

were weaned at approximately 21 d of age and fed a common phase 1 diet for 14 d were allotted 

to 4 dietary treatments with 8 replicate pens per treatment in a randomized complete block 

design. Four replicates of each treatment consisted of a pen with 3 gilts and 2 barrows whereas 

the other 4 replicates of each treatment consisted of a pen with 2 gilts and 2 barrows. Pigs were 

fed the dietary treatments for 21 d. Pigs were housed and fed treatment diets as outlined for Exp. 

1. 

Sample Analysis, Performance Measurements, and Data Processing. Ingredients and diets 

were analyzed as described for Exp. 1. Performance measurements and data processing were also 

similar to those described for Exp. 1, except that PUN analysis was not performed.  

 

RESULTS 

Exp. 1, Use of Heat Damaged Soybean Meal 

The concentration of CP was 47.78 and 46.47% in the non-autoclaved SBM and the 

autoclaved SBM, respectively (Table 6.1). The concentration of NDF was 10.28% in the non-

autoclaved SBM vs. 34.94% in the autoclaved SBM. The non-autoclaved SBM contained 2.85% 

Lys, whereas the autoclaved SBM contained 2.58% Lys. The concentration of Lys:CP was 6.09 

for the non-autoclaved SBM and 5.40 for the autoclaved SBM. The concentration of CP in Diets 

1, 2, 3, and 4 were 19.75, 19.85, 19.48, and 20.01%, respectively (Table 6.4). The concentration 

of Lys was 1.13% in Diet 1, 0.97% in Diet 2, 1.03% in Diet 3, and 1.10% in Diet 4. 

No differences in initial BW of pigs were observed among dietary treatments (Table 6.6). 

Pigs that were fed Diet 2, however, had reduced (P < 0.05) BW on d 7 compared with pigs fed 
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the other diets, but the BW on d 7 for pigs fed Diet 4 was not different from the BW of pigs fed 

Diet 1. Likewise, the BW on d 7 of pigs fed Diet 3 was not different from that of pigs fed Diet 4. 

A similar trend for the BW of pigs on d 14 was observed. The final BW on d 21 for pigs fed 

either Diet 3
 
or Diet 4 was less (P < 0.05) than the final BW of pigs fed Diet 1, but greater (P < 

0.05) than the final BW of pigs fed Diet 2. 

The ADG (d 0 to 7, and d 7 to 14) of pigs fed Diet 1 was greater (P < 0.05) than the ADG 

of pigs fed either Diet 2 or Diet 3, but not different from the ADG of pigs fed Diet 4. The ADG 

from d 14 to 21 and the overall ADG of pigs fed Diet 1 was also greater (P < 0.05) than the ADG 

of pigs fed the other diets, but pigs fed either Diet 3
 
or Diet 4 had greater (P < 0.05) ADG than 

pigs fed Diet 2. 

Pigs fed Diet 3 or Diet 4 had greater (P < 0.05) ADFI (d 0 to 7) than pigs fed Diet 2, but 

there was no difference in ADFI between pigs fed Diet 1 or Diet 3. From d 7 to 14, d 14 to 21, or 

d 0 to 21, pigs fed Diet 3
 
or Diet 4 tended (P = 0.08) to consume more feed than pigs fed the 

other diets. 

The G:F (d 0 to 7) was greater (P < 0.05) for pigs fed Diet 1 than for pigs fed the other 

diets. Pigs fed Diet 3 or Diet 4 had greater (P < 0.05) G:F compared with pigs fed Diet 2. 

Likewise, the G:F (d 7 to 14, d 14 to 21, and overall) was greater (P < 0.05) for pigs fed Diet 1 

compared with pigs fed the other diets. Pigs fed Diet 4 had greater (P < 0.05) G:F during the 

entire experiment than pigs fed Diet 2. 

Pigs that were fed Diet 1 required less (P < 0.05) SID Lys:BW gain (g/kg) than pigs fed 

the other diets. There were no differences on the SID Lys:BW gain among pigs fed Diets 2, 3, or 

4. 
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The concentration of PUN was less (P < 0.05) in pigs fed Diet 1 than in pigs fed Diet 2 or 

Diet 3, but not different form the PUN in pigs fed Diet 4. Pigs fed Diet 2 had the greatest (P < 

0.05) concentration of PUN among all dietary treatments.  

Exp. 2, Use of Heat Damaged Distillers Dried Grains with Solubles 

 The analyzed ADF concentration was 8.53% in non-autoclaved DDGS, whereas 

autoclaved DDGS contained 15.47% ADF (Table 6.1). The Lys:CP ratio in non-autoclaved 

DDGS was 3.05, but 2.24 in autoclaved DDGS. The Lys concentration in Diet 1 was 1.11%, 

whereas the concentration of Lys was 1.06, 1.10, and 1.08% for Diets 2, 3, 4, respectively (Table 

6.5). 

No differences were observed for initial BW among dietary treatments (Table 6.7), but 

pigs fed Diets 1 or 4 tended (P = 0.06) to have a greater BW on d 7 than pigs fed Diets 2 or 3. 

The G:F from d 0 to 7 was greater (P < 0.05) for pigs fed Diet 1 or Diet 4 than for pigs fed Diet 

2, but the G:F of pigs fed Diet 3 was not different from the G:F of pigs fed Diets 2 or 4. 

 From d 7 to 14, no differences in growth performance were observed among treatments, 

except that pigs fed diets containing autoclaved DDGS had greater (P < 0.05) ADFI than pigs 

fed the positive control diet. Likewise, no differences in performance were observed from d 14 to 

21 among dietary treatments. For the entire period (d 0 to 21), it was observed that pigs fed Diets 

2 or 4 had greater (P < 0.05) ADFI than pigs fed Diet 1, but no differences in ADFI were 

observed among pigs fed the diets containing autoclaved DDGS. Pigs fed Diet 1 had greater (P < 

0.05) G:F than pigs fed the other diets. No differences were observed for the SID Lys:BW gain 

(g/kg) among dietary treatments.  
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DISCUSSION 

Ingredients 

 Soybean meal is the protein source most utilized in diets fed to pigs, but because 

inactivation of antinutritional factors in SBM requires heat processing, some variation in the 

nutritional value of different sources of SBM may exist (Stein et al., 2008). The concentrations 

of DM, CP, and indispensable AA in the non-autoclaved SBM used in this experiment are in 

agreement with values reported by Fontaine et al. (2007) and González-Vega et al. (2011). The 

concentration of Lys is reduced in heat-damaged ingredients whereas the concentration of CP 

remains relatively constant during heat damage (Fontaine et al., 2007; González-Vega et al., 

2011). The reduction in the concentration of Lys in heat-damaged feed ingredients is likely a 

result of Maillard reactions (Pahm et al., 2008). Because the concentration of Lys, but not the 

concentration of CP, is reduced during heat damage, it has been suggested that the Lys:CP ratio 

may be used as an indicator of heat damage in feed ingredients (Stein et al., 2009; Cozannet et 

al., 2010; Kim et al., 2012). Reductions in the Lys:CP ratio as a result of heat damage in SBM 

that were observed in this experiment have also been observed in previous experiments (Fontaine 

et al., 2007; González-Vega et al., 2011). Increased NDF in the autoclaved SBM compared with 

the non-autoclaved SBM is in agreement with observations by Hussein et al. (1995). Some of the 

products from the Maillard reactions form a “lignin-like matrix”, which is analyzed as fractions 

of NDF (Hussein et al., 1995). Thus, it is likely that the observed increase in the analyzed 

concentration of ADF in autoclaved DDGS compared with non-autoclaved DDGS was also a 

result of this artifact. The protein fraction of SBM is mainly composed of globulins and 

albumins, which are susceptible to heat damage and, therefore, Maillard reactions may increase 

the concentrations of insoluble N, NDF, and ADF (Hussein et al., 1995). The concentration of 
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NDF was increased from 14.3% in non-autoclaved SBM to 17.1% in SBM autoclaved at 127°C 

for 10 min (Sadeghi et al., 2006). These observations indicate that the concentration of NDF 

within a source of SBM may also serve as an indicator of heat damage. When SBM is heat 

processed, the combination of heat, reducing sugars, and the “free” amino groups of proteins and 

AA may initiate Maillard reactions (Fontaine et al., 2007; González-Vega et al., 2011). Lysine 

that reacts with reducing sugars through Maillard reactions becomes unavailable to pigs 

(Nursten, 2005, Pahm et al., 2008). In heat-damaged feed ingredients, however, Lys that initially 

reacted with reducing sugars is partially recovered under traditional AA analysis (Pahm et al., 

2008). The analyzed concentration of total Lys in heat-damaged feed ingredients is, therefore, 

believed to overestimate the concentration of reactive Lys, which is the Lys that can potentially 

be used for protein synthesis by the pig. The concentration of reactive Lys and the digestibility of 

Lys in heat-damaged SBM is reduced (Fontaine et al., 2007; González-Vega et al., 2011) 

compared with SBM that is not heat-damaged. Thus, if heat-damaged SBM or DDGS is used in 

diet formulation assuming the same concentration and digestibility of Lys and other AA as in 

non-heat damaged SBM, diets that are deficient in digestible AA may be formulated.  

 Diets 

The Diets 2 used in the experiments were formulated to simulate a situation where a 

batch of heat-damaged SBM or DDGS is treated as regular (not heat-damaged) SBM or DDGS. 

Thus, in these diets, the concentrations of analyzed AA from SBM or DDGS that are not heat-

damaged were used. The concentrations of digestible AA in these diets, therefore, were likely 

overestimated because the concentration and the digestibility of most AA in autoclaved SBM  

and DDGS is reduced compared with SBM or DDGS that has not been autoclaved (Cozannet et 

al., 2010; González-Vega et al., 2011). This observation is supported by the reduced 
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concentrations of analyzed AA in Diet 2 in both experiments compared with concentrations in 

the diets containing non-autoclaved SBM or DDGS. When formulating Diet 3, the reduced 

concentrations of AA, but not the reduced digestibility, was corrected by addition of increased 

quantities of crystalline Lys, Met, and Thr (Exp. 1), or increased quantities of crystalline Lys, 

Thr, Met, Trp, Val, and Ile (Exp. 2). Thus, Diet 3 in both experiments simulated a situation 

where ingredients were analyzed for concentrations of AA prior to diet formulation. However, in 

Diet 4, additional crystalline AA were used to compensate for the reduced concentrations and the 

reduced digestibility of AA in the heat-damaged SBM or DDGS. Diet 4, therefore, simulated a 

situation where it was recognized that SBM or DDGS was heat-damaged, and that expected 

reductions in AA digestibility were taken into account in diet formulations. It was expected that 

this approach would result in concentrations of SID AA in Diet 4 that were similar to 

concentrations in Diet 1. To achieve this, a greater concentration of total Lys in Diet 4 was 

necessary. For Exp. 1, the analyzed total concentration of Lys in Diet 4 was slightly less than 

expected (1.10 vs. 1.18%). An analysis of free AA in the diets was, therefore, performed and it 

was confirmed that crystalline AA were accurately supplemented to the diets. The AA 

concentrations in the autoclaved SBM (analyzed by NIR) used in diet formulation were slightly 

greater than the corresponding values analyzed via wet chemistry (e.g., Lys, 2.68 vs. 2.51%, 

[data not shown]). Thus, it is likely that the difference between calculated and analyzed total AA 

in Diet 4 was a result of an overestimation of these AA (by NIR analysis) in heat-damaged SBM, 

thereby indicating the necessity for further improvement in the analysis. In diets for Exp. 2, the 

concentration of analyzed total Lys was also less than the calculated concentrations. In 

particular, the concentration of total Lys in Diet 4 turned out to be close to that in Diet 3 (1.08 vs. 
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1.10%) and approximately 0.08% less than the calculated value. This was unexpected and may 

have partly contributed to the observed performance of pigs in Exp. 2.  

Performance 

The difference in the final BW observed between pigs fed Diet 1 and Diet 2 at the end of 

Exp. 1 was expected because of the reduced concentration and digestibility of AA in Diet 2. 

Supplementation of practical diets with crystalline AA is a common practice, but because of the 

overestimation of the concentration of Lys in feedstuffs that have been heat-damaged, the 

quantity of digestible AA added to diets containing such ingredients may not meet the pig`s 

requirement, thus, leading to decreased performance. This is likely the reason for the reduced 

performance of pigs fed Diet 2. However, the fact that pigs fed Diet 4 had greater final BW, 

ADG, and G:F than pigs fed Diet 2 indicates that by taking both the reduced concentration of AA 

and the reduced digestibility of AA in heat-damaged SBM into account in diet formulation, the 

negative effects of heat damage may be ameliorated. To our knowledge, this is the first time an 

experiment has been conducted to evaluate the effects of heat damage and the use of different 

diet formulation approaches on performance of weanling pigs fed heat-damaged SBM. A similar 

experiment, however, was conducted with broiler chicks (Evonik, 2010). Performance of broilers 

fed diets containing autoclaved SBM was less than the performance of broilers fed diets 

containing non-autoclaved SBM, but performance of broilers fed diets containing autoclaved 

SBM was restored to the same level as that observed for chicks fed diet containing non-

autoclaved SBM when the reduced concentration and digestibility of AA in the negative control 

diet was taken into account in diet formulations. Thus, results of the present experiment with 

pigs are in agreement with the data observed in broilers. These results confirm the need for 

nutrient evaluation of each individual batch of SBM before diet formulation. 
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One of the possible reasons why performance of pigs fed Diet 4 in Exp. 2 was not 

improved to the same level as that of pigs fed Diet 1 may be that the SID values used to 

formulate this diet were determined from experiments using growing pigs whereas weaned pigs 

were used in this experiment. It has been reported that the digestibility of AA is considerably less 

for weaned pigs compared with growing pigs (Mariscal-Landin et al., 2008). It is also possible 

that the impact of heat damage on the digestibility of AA may be greater in weaned pigs 

compared with growing pigs but, to our knowledge, this has not been demonstrated. Another 

factor that may have contributed to the lack of a response to adjustments in diet formulation in 

Exp. 2 is that the differences in Lys concentration among diets were less than in Exp. 1 because 

of the relatively low inclusion level of DDGS in the diets. In the present experiment, DDGS was 

included in diets at a level of 22% to be consistent with what is recommended for weaned pigs 

(National Swine Nutrition Guide, 2010). The small differences in Lys concentration among diets 

is likely the reason we did not observe differences in ADG among treatments. The differences in 

G:F among treatments is likely a result of the increased ADFI of pigs fed diets containing 

autoclaved SBM or DDGS compared with pigs fed the non-autoclaved ingredients. The reasons 

for the greater ADFI in pigs fed diets containing autoclaved DDGS may be that diets were more 

palatable because of the formation of Maillard reaction products (Ames, 1998) or because pigs 

were trying to compensate for the Lys deficiency in the diets. The latter assumption is supported 

by the fact that SID Lys:BW gain was the same among dietary treatments.   

As a consequence of the reduced concentration and digestibility of AA in heat-damaged 

SBM, an imbalance of AA may be created in pigs fed diets containing SBM that has been heat-

damaged, and some AA may have been absorbed in quantities that are less than the requirement. 

Protein synthesis, therefore, may have been limited by the concentrations of the limiting AA. 
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Amino acids that are absorbed in excess of what is used for protein synthesis will be catabolized 

and the amino group will be used in the synthesis of urea, which then is excreted via the urine 

(Klindt et al., 2006). Thus, the differences observed in PUN between pigs fed Diet 1 and Diet 2 

were expected because in the diet containing non-autoclaved SBM, AA were expected to be 

more balanced, therefore, leading to increased protein synthesis and less PUN. The PUN 

concentrations observed for pigs fed Diet 4 were not different from those of pigs fed Diet 1, 

which confirms the need for adjustments in total AA concentrations and SID AA values 

according to the degree of heat damage in SBM. This observation also indicates that if such 

adjustments are accomplished, not only protein synthesis, but also performance, may be 

improved if heat-damaged SBM is included in diets. 

Conclusions 

Results from this experiment demonstrate the negative effects of excessive heating of 

SBM on performance of weaned pigs. Results also demonstrate that the negative effects of heat 

damage may be ameliorated if the reduced concentration as well as the reduced digestibility of 

AA in heat-damaged SBM is corrected. Diets containing heat-damaged SBM, therefore, need to 

contain greater concentrations of Lys, Met, and Thr compared with diets containing non-heat 

damaged SBM. Diets for weaned pigs containing up to 22% of heat-damaged DDGS reduce 

performance of pigs compared with diets containing DDGS that has not been heat-damaged, but 

correction for the reduced concentration and the reduced digestibility of AA in heat-damaged 

DDGS may not be of practical importance for weaned pigs.   
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TABLES 

 

Table 6.1. Analyzed nutrient composition of ingredients (as-fed basis), Exp. 1 and 2
1
 

  Exp. 1  Exp. 2 

Item  Corn  Non-autoclaved 

SBM
2 

 Autoclaved 

SBM
3 

 Corn  Non-autoclaved 

DDGS 

 Autoclaved 

DDGS
3
 

DM, %  89.5  90.7  85.0  88.2  92.4  88.5 

CP, %  8.54  47.78  46.47  7.89  27.91  26.82 

ADF, %  2.09  4.56  4.49  1.85  8.53  15.47 

NDF, %  8.93  10.28  34.94  9.75  31.93  29.65 

Ca, %  0.00  0.31  0.29  0.01  0.05  0.05 

P, %  0.23  0.61  0.57  0.24  0.89  0.87 

Lys:CP
4
   -  6.09  5.40  -  3.05  2.24 

Indispensable AA, %             

  Arg  0.40  3.44  3.09  0.39  1.27  1.05 

  His  0.23  1.23  1.15  0.22  0.73  0.64 
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Table 6.1. (Cont.)             

  Ile  0.28  2.14  2.07  0.26  1.01  0.94 

  Leu  1.00  3.62  3.44  0.91  3.07  2.86 

  Lys  0.26  2.91  2.51  0.24  0.85  0.60 

  Met  0.17  0.67  0.63  0.16  0.56  0.50 

  Phe  0.41  2.38  2.25  0.37  1.30  1.20 

  Thr  0.29  1.89  1.78  0.28  1.05  0.97 

  Trp  0.06  0.65  0.62  -  -  - 

  Val  0.37  2.23  2.16  0.36  1.35  1.25 

Dispensable AA, %             

  Ala  0.60  2.05  1.95  0.58  1.99  1.85 

  Asp  0.56  5.39  5.08  0.52  1.82  1.66 

  Cys  0.18  0.67  0.58  0.18  0.57  0.49 

  Glu  1.49  8.43  7.99  1.39  4.69  4.37 

  Gly  0.32  2.02  1.93  0.31  1.12  1.04 

  Pro  0.74  2.34  2.25  0.69  2.32  1.99 
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Table 6.1. (Cont.)             

  Ser  0.40  2.40  2.24  0.38  1.35  1.23 

 
1
SBM = soybean meal; DDGS = distillers dried grains with solubles. 

 
2
This source of SBM was also included in diets fed to pigs in Exp. 2. 

 
3
Autoclaved at 125°C for 60 min. 

 
4
Calculated by expressing the concentration of Lys in each ingredient as a percentage of the concentration of CP (Stein et al., 

2009).
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Table 6.2. Ingredient and nutrient composition of diets used in Exp. 1 (as-fed basis) 

  Diets
1
 

  Non-autoclaved 

SBM
2
 

 Autoclaved SBM - 125°C, 60 min 

  Diet 1  Diet 2 Diet 3 Diet 4 

Ingredient, %       

Non-autoclaved SBM  31.50  - - - 

Autoclaved SBM  -  31.50 31.50 31.50 

Ground corn  61.93  61.93 61.93 61.93 

Soybean oil  2.00  2.74 2.00 2.29 

Corn starch  2.00  2.00 1.84 1.42 

Dicalcium phosphate  0.94  0.94 0.94 0.94 

Ground limestone  1.00  1.00 1.00 1.00 

Salt  0.20  0.20 0.20 0.20 

L-Lys  0.08  0.08 0.18 0.24 

L-Thr  -  - 0.02 0.06 

DL-Met  0.05  0.05 0.08 0.10 

L-Trp  -  - 0.01 0.02 

Vitamin-mineral 

premix
3
 

 0.30  0.30 0.30 0.30 

Calculated nutrients,
4  

%       

  CP  20.42  19.89 20.01 20.12 

  Total Lys  1.14  1.14 1.13 1.18 
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Table 6.2. (Cont.)       

  SID Lys  1.00  1.00 (0.88) 1.00 (0.95) 1.00 

  SID Met  0.33  0.33 (0.31) 0.35 (0.34) 0.36 

  SID Met + Cys  0.61  0.61 (0.56) 0.61 (0.59) 0.61 

  SID Thr  0.67  0.67 (0.61) 0.66 (0.63) 0.67 

  SID Trp  0.21  0.21 (0.19) 0.21 (0.20) 0.21 

  SID Ile  0.76  0.76 (0.70) 0.74 (0.70) 0.70 

  SID Val  0.84  0.84 (0.78) 0.82 (0.78) 0.78 

  SID Leu  1.56  1.56 (1.46) 1.53 (1.46) 1.46  

  Ca, %  0.71  0.71 0.71 0.71 

  Available P, %  0.32  0.32 0.32 0.32 

1
Diet 3 = diet was formulated taking into account the negative effects of heat damage on 

the concentration of AA; Diet 4 = diet was formulated taking into account the negative effects of 

heat damage on the concentration and on the digestibility of AA. 
2
SBM = soybean meal. 

3
The vitamin-micromineral premix provided the following quantities of vitamins and 

micro minerals per kilogram of complete diet: Vitamin A as retinyl acetate, 11,128 IU; vitamin 

D3 as cholecalciferol, 2,204 IU; vitamin E as DL-alphatocopheryl acetate, 66 IU; vitamin K as 

menadione nicotinamide bisulfate, 1.42 mg; thiamin as thiamine mononitrate, 0.24 mg; 

riboflavin, 6.58 mg;  pyridoxine as pyridoxine hydrochloride, 0.24 mg; vitamin B12, 0.03 mg; D-

pantothenic acid as D-calcium pantothenate, 23.5 mg; niacin as nicotinamide, 1.0 mg, and 

nicotinic acid, 43.0 mg; folic acid, 1.58 mg; biotin, 0.44 mg; Cu, 10 mg as copper sulfate; Fe, 

125 mg as iron sulfate; I, 1.26 mg as potassium iodate; Mn, 60 mg as manganese sulfate; Se, 0.3 

mg as sodium selenite; and Zn, 100 mg as zinc oxide. 
4
SID = standardized ileal digestible; Values in parentheses were calculated taking into 

account the negative effect of heat damage on the SID of AA. 
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Table 6.3. Ingredient and nutrient composition of diets used in Exp. 2 (as-fed basis) 

  Diets
1
 

  Non-autoclaved 

DDGS
2
 

 Autoclaved DDGS - 125°C, 60 min 

  Diet 1  Diet 2 Diet 3 Diet 4 

Ingredient, %       

Non-autoclaved DDGS  22.00  - - - 

Autoclaved DDGS  -  22.00 22.00 22.00 

Ground corn  62.20  62.20 62.20 62.20 

Soybean meal  8.50  8.50 8.50 8.50 

Soybean oil  1.464  1.464 1.464 1.593 

Corn starch  2.00  2.00 1.95 1.67 

Dicalcium phosphate  0.98  0.98 0.98 0.98 

Ground limestone  1.13  1.13 1.13 1.13 

Salt  0.15  0.15 0.15 0.15 

Vitamin-mineral 

premix
3
 

 0.30  0.30 0.30 0.30 

L-Lys  0.695  0.695 0.715 0.754 

L-Thr  0.181  0.181 0.186 0.210 

DL-Met  0.146  0.146 0.160 0.184 

L-Trp  0.098  0.098 0.101 0.110 

L-Val  0.091  0.091 0.092 0.130 

L-Ile  0.060  0.060 0.065 0.091 
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Table 6.3. (Cont.)       

Calculated nutrients,
4  

%       

  CP  16.02  15.97 16.01 16.13 

  Total Lys  1.13  1.13 1.13 1.15 

  SID Lys  1.00  1.00 (0.95) 1.00 (0.97) 1.00 

  SID Met  1.13  1.13 (1.11) 1.13 (1.12) 1.15 

  SID Met + Cys  0.38  0.38 (0.36) 0.38 (0.38) 0.40 

  SID Thr  0.60  0.60 (0.56) 0.60 (0.57) 0.60 

  SID Trp  0.63  0.63 (0.60) 0.63 (0.61) 0.63 

  SID Ile  0.21  0.21 (0.20) 0.21 (0.20) 0.21 

  SID Val  0.54  0.54 (0.51) 0.54 (0.51) 0.54 

  SID Leu  0.68  0.68 (0.64) 0.68 (0.64) 0.68 

  Ca, %  1.36  1.36 (1.30) 1.34 (1.30) 1.30 

  Available P, %  0.70  0.70 0.70 0.70 

1
Diet 3 = diet was formulated taking into account the negative effects of heat damage on 

the concentration of AA; Diet 4 = diet was formulated taking into account the negative effects of 

heat damage on the concentration and on the digestibility of AA. 
2
DDGS = distillers dried grains with solubles. 

3
The vitamin-micromineral premix provided the following quantities of vitamins and 

micro minerals per kilogram of complete diet: Vitamin A as retinyl acetate, 11,128 IU; vitamin 

D3 as cholecalciferol, 2,204 IU; vitamin E as DL-alphatocopheryl acetate, 66 IU; vitamin K as 

menadione nicotinamide bisulfate, 1.42 mg; thiamin as thiamine mononitrate, 0.24 mg; 

riboflavin, 6.58 mg;  pyridoxine as pyridoxine hydrochloride, 0.24 mg; vitamin B12, 0.03 mg; D-

pantothenic acid as D-calcium pantothenate, 23.5 mg; niacin as nicotinamide, 1.0 mg, and 

nicotinic acid, 43.0 mg; folic acid, 1.58 mg; biotin, 0.44 mg; Cu, 10 mg as copper sulfate; Fe, 

125 mg as iron sulfate; I, 1.26 mg as potassium iodate; Mn, 60 mg as manganese sulfate; Se, 0.3 

mg as sodium selenite; and Zn, 100 mg as zinc oxide. 
4
SID = standardized ileal digestible; Values in parentheses were calculated taking into 

account the negative effect of heat damage on the SID of AA.  
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Table 6.4. Analyzed nutrient composition of diets used in Exp. 1 (as-fed basis) 

  Diets
1
 

  Non-autoclaved 

SBM
2
 

 Autoclaved SBM - 125°C, 60 min 

  Diet 1  Diet 2 Diet 3 Diet 4 

Item       

GE, kcal/kg  4,106  4,041 4,059 4,058 

DM, %  90.27  89.23 89.29 89.36 

CP, %  19.75  19.85 19.48 20.01 

ADF, %  2.74  2.71 2.79 2.98 

NDF, %  8.92  17.75 18.88 17.68 

Ca, %  0.74  0.70 0.75 0.75 

P, %  0.55  0.50 0.52 0.54 

Indispensable AA, %       

  Arg  1.31  1.20 1.19 1.20 

  His  0.53  0.51 0.51 0.51 

  Ile  0.84  0.82 0.82 0.85 

  Leu  1.73  1.73 1.74 1.73 

  Lys  1.13  0.97 1.03 1.10 

  Met  0.36  0.33 0.36 0.38 

  Phe  0.99  0.99 0.98 0.98 

  Thr  0.77  0.76 0.79 0.79 

  Trp  0.24  0.23 0.24 0.25 
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Table 6.4. (Cont.)       

  Val  0.93  0.91 0.90 0.95 

Dispensable AA, %       

  Ala  1.01  1.00 1.01 1.00 

  Asp  2.02  1.99 1.96 1.99 

  Cys  0.32  0.29 0.29 0.29 

  Glu  3.53  3.50 3.49 3.49 

  Gly  0.83  0.82 0.81 0.82 

  Pro  1.19  1.19 1.19 1.18 

  Ser  0.99  0.99 0.97 0.95 

1
Diet 3 = diet was formulated taking into account the negative effects of heat damage on 

the concentration of AA; Diet 4 = diet was formulated taking into account the negative effects of 

heat damage on the concentration and on the digestibility of AA. 
2
SBM = soybean meal.
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Table 6.5. Analyzed nutrient composition of diets used in Exp. 2 (as-fed basis) 

  Diets
1
 

  Non-autoclaved 

DDGS
2
 

 Autoclaved DDGS - 125°C, 60 min 

  Diet 1  Diet 2 Diet 3 Diet 4 

Item       

GE, kcal/kg  4,071  4,054 4,077 4,064 

DM, %  89.17  88.51 88.34 88.44 

CP, %  15.72  15.27 15.44 16.01 

ADF, %  3.58  4.47 5.44 5.03 

NDF, %  13.52  14.33 14.00 13.62 

Ca, %  0.74  0.63 0.68 0.70 

P, %  0.60  0.58 0.57 0.57 

Indispensable AA, %       

  Arg  0.80  0.76 0.75 0.78 

  His  0.40  0.39 0.38 0.40 

  Ile  0.61  0.58 0.60 0.65 

  Leu  1.52  1.53 1.50 1.56 

  Lys  1.11  1.06 1.10 1.08 

  Met  0.41  0.39 0.41 0.44 

  Phe  0.71  0.71 0.70 0.73 

  Thr  0.72  0.69 0.72 0.72 
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Table 6.5. (Cont.)       

  Trp  0.22  0.22 0.21 0.23 

  Val  0.77  0.75 0.76 0.82 

Dispensable AA, %       

  Ala  0.94  0.95 0.93 0.96 

  Asp  1.17  1.15 1.13 1.18 

  Cys  0.28  0.27 0.27 0.28 

  Glu  0.61  0.60 0.59 0.61 

  Gly  1.15  1.10 1.08 1.13 

  Pro  0.73  0.73 0.70 0.73 

  Ser  0.94  0.95 0.93 0.96 

1
Diet 3 = diet was formulated taking into account the negative effects of heat damage on 

the concentration of AA; Diet 4 = diet was formulated taking into account the negative effects of 

heat damage on the concentration and on the digestibility of AA. 
2
DDGS = distillers dried grains with solubles. 
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Table 6.6. Performance of weanling pigs fed diets containing non-autoclaved or autoclaved soybean meal (SBM)
1 

  Diets
2
     

  Non-autoclaved SBM  Autoclaved SBM - 125°C, 60 min  SEM  P-value 

Item  Diet 1  Diet 2 Diet 3 Diet 4     

d 0 to 7           

  Initial BW, kg  10.47  10.43 10.44 10.44  0.45  0.52 

  ADG, kg  0.353
a
  0.231

c
 0.295

b
 0.331

ab
  0.020  < 0.01 

  ADFI, kg  0.590
b
  0.563

b
 0.619

ab
 0.663

a
  0.030  0.04 

  G:F  0.595
a
  0.410

c
 0.459

b
 0.500

b
  0.017  < 0.01 

  Final BW, kg  13.02
a
  12.06

c
 12.52

b
 12.75

ab
  0.54  < 0.01 

d 7 to 14           

  ADG, kg  0.526
a
  0.384

c
 0.451

b
 0.481

ab
  0.019  < 0.01 

  ADFI, kg  0.861
b
  0.864

b
 0.906

ab
 1.008

a
  0.044  0.08 

  G:F  0.614
a
  0.460

b
 0.480

b
 0.480

b
  0.019  < 0.01 

  Final BW, kg  16.70
a
  14.87

c
 15.68

b
 16.13

ab
  0.66  < 0.01 

d 14 to 21           
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Table 6.6. (Cont.)           

  ADG, kg  0.571
a
  0.437

c
 0.510

b
 0.510

b
  0.027  < 0.01 

  ADFI, kg  0.989  1.085 1.099 1.099  0.051  0.18 

  G:F  0.579
a
  0.432

b
 0.464

b
 0.464

b
  0.01  < 0.01 

  Final BW, kg  20.71
a
  18.00

c
 19.26

b
 19.70

b
  0.82  < 0.01 

Overall (d 0 to 21)           

  ADG, kg  0.490
a
  0.351

c
 0.418

b
 0.440

b
  0.018  < 0.01 

  ADFI, kg  0.813
b
  0.838

ab
 0.873

ab
 0.921

a
  0.038  0.08 

  G:F  0.600
a
  0.442

c
 0.471

bc
 0.478

b
  0.012  < 0.01 

  SID Lys:BW gain, 

g/kg 

 16.49
b
  18.30

a
 18.46

a
 19.59

a
  0.43  < 0.01 

  PUN,
3
 mg/dL  11.19

c
  17.88

a
 14.44

b
 12.81

bc
  0.70  < 0.01 

 
a-c

Means within the same row lacking a common superscript letter are different (P < 0.05). 
1
Data are means of 8 observations per treatment. 

2
Diet 3 = diet was formulated taking into account the negative effects of heat damage on the concentration of AA; Diet 4 = diet 

was formulated taking into account the negative effects of heat damage on the concentration and on the digestibility of AA. The SID 

Lys level in diets was 0.99 (Diet 1), 0.81 (Diet 2), 0.87 (Diet 3), and 0.93% (Diet 4). 
3
PUN = plasma urea nitrogen.
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Table 6.7. Performance of weanling pigs fed diets containing non-autoclaved or autoclaved distillers dried grains with solubles 

(DDGS)
1 

  Diets
2
     

  Non-autoclaved DDGS  Autoclaved DDGS - 125°C, 60 min  SEM  P-value 

Item  Diet 1  Diet 2 Diet 3 Diet 4     

d 0 to 7           

  Initial BW, kg  9.89  9.94 9.89 9.93  0.52  0.50 

  ADG, kg  0.214  0.170 0.182 0.215  0.02  0.06 

  ADFI, kg  0.569  0.612 0.563 0.604  0.05  0.35 

  G:F  0.383
a
  0.278

b
 0.324

ab
 0.363

a
  0.03  0.03 

  Final BW, kg  11.39  11.15 11.15 11.44  0.63  0.06 

d 7 to 14           

  ADG, kg  0.395  0.435 0.433 0.442  0.03  0.32 

  ADFI, kg  0.807
b
  0.969

a
 0.945

a
 1.030

a
  0.07  0.02 

  G:F  0.490  0.454 0.466 0.433  0.02  0.21 

  Final BW, kg  14.16  14.19 14.18 14.54  0.77  0.23 
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Table 6.7. (Cont.)           

d 14 to 21           

  ADG, kg  0.546  0.528 0.501 0.535  0.03  0.39 

  ADFI, kg  1.086  1.189 1.155 1.219  0.07  0.17 

  G:F  0.505  0.451 0.436 0.446  0.02  0.08 

  Final BW, kg  17.99  17.89 17.69 18.28  0.95  0.36 

Overall (d 0 to 21)           

  ADG, kg  0.385  0.378 0.372 0.397  0.02  0.46 

  ADFI, kg  0.821
b
  0.923

a
 0.887

ab
 0.950

a
  0.06  0.03 

  G:F  0.472
a
  0.413

b
 0.423

b
 0.422

b
  0.01  0.02 

  SID Lys:BW gain, 

g/kg 

 20.86  22.19 22.65 22.47  0.75  0.32 

a-b
 Means within the same row lacking a common superscript letter are different (P < 0.05). 

1
Data are means of 8 observations per treatment. 

2
Diet 3 = diet was formulated taking into account the negative effects of heat damage on the concentration of AA; Diet 4 = diet was 

formulated taking into account the negative effects of heat damage on the concentration and on the digestibility of AA.
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GENERAL CONCLUSIONS 

 Heat processing during manufacture of distillers dried grains with solubles (DDGS), 

canola meal, sunflower meal, and cottonseed meal is detrimental to their nutritional value 

because not only the concentration, but also the digestibility of most AA is reduced.  

Fiber components, such as ADF, NDF, and lignin, give some indication that a feed 

ingredient has been heat-damaged, but these indications are not consistent among all ingredients 

used in this research. As the degree of heat damage increased, the analyzed concentrations of 

NDF in canola meal, sunflower meal, and cottonseed meal increased, but that was not the case 

for DDGS. Increasing the degree of heat damage also resulted in an increase in the concentration 

of ADF in DDGS, canola meal, and sunflower meal, but not in cottonseed meal. The 

concentration of analyzed lignin was also affected by heat damage, in which the greater the 

degree of heat damage, the greater the concentration of lignin in the feed ingredients evaluated. 

The concentration of calculated reactive Lys using the furosine procedure also provides 

information about the degree of heat damage. In the current research, the concentration of 

reactive Lys corresponded to approximately 98% of the concentration of total Lys. Regression 

analyses indicated that there is a good correlation between the concentration of standardized ileal 

digestible Lys and the concentration of reactive Lys. Equations developed in these experiments, 

however, need further validation using different sources of DDGS, canola meal, sunflower meal, 

and cottonseed meal. Alternatively, the Lys:CP ratio gives a good indication that a feed 

ingredient has been heat-damaged, and this was consistent among all feed ingredients evaluated 

in this research. Thus, it appears that the protein quality of DDGS, canola meal, sunflower meal, 

and cottonseed meal can be determined by the Lys:CP ratio. 
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Among all AA, the digestibility of Lys was the most negatively affected by heat damage 

in DDGS, canola meal, sunflower meal, and cottonseed meal. Heat damage also decreased the 

digestibility of all AA for all feed ingredients evaluated in this research, although this reduction 

was in some cases, linear, and in others, quadratic.  

Performance of weanling pigs fed heat-damaged soybean meal or DDGS was reduced 

compared with pigs that were feed non-heat- damaged soybean meal or DDGS. If the 

concentration of standardized ileal digestible AA in diets containing heat-damaged soybean meal 

or DDGS is adjusted by supplementation of with crystalline AA, performance of weaned pigs 

may be partially ameliorated. 

In conclusion, this research indicates that the chemical composition of feed ingredients is 

affected by heat damage, but the Lys:CP ratio was the parameter that showed more consistent 

changes among the feed ingredients evaluated. Thus, determination of Lys:CP ratio is 

recommended to identify heat-damaged feed ingredients. If heat-damaged feed ingredients are 

used in diets for weaned pigs, it is necessary to adjust the concentrations of standardized ileal 

digestible AA in the formulation, by supplementing crystalline AA, to compensate for the losses 

in the concentrations and digestibility of AA. 


