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Abstract: Phosphorus (P) is a macro mineral needed for bone mineralization and cell 
membrane structure and P is also involved in several fundamental pathways of metabolism 
in the body. Because of the low concentration and digestibility of P in plant ingredients 
that are the main components of diets for poultry and pigs, feed phosphates are usually 
included in diets in addition to the P contributed by plant ingredients. The most widely 
used feed phosphates in poultry and swine diets are dicalcium phosphate (DCP) and 
monocalcium phosphate (MCP), but tricalcium phosphate (TCP), monosodium phosphate 
(MSP), and magnesium phosphate (MgP) may be used as well. Because feed phosphates 
are mostly produced from rock phosphate, feed phosphates have impurities that contain 
minerals other than P. Concentrations of P in feed phosphates range from 14.8% (MgP) 
to 25.7% (MSP). The standardized total tract digestibility (STTD) of P in pigs ranges 
from 71% (TCP) to 95% (MSP). The STTD of Ca and the standardized ileal digestibility 
(SID) of P and Ca in feed phosphates fed to pigs and poultry have been determined only 
in a few experiments. Available data indicate that the STTD of Ca and SID of P in MCP 
are greater than in DCP in both poultry and pigs, but the SID of Ca is similar between 
DCP and MCP fed to broilers. Information on mineral concentrations and digestibility 
values in feed phosphates is needed in diet formulation for pigs and poultry, but if diets 
are formulated to contain equal concentrations of digestible P and Ca, it is unlikely that 
animal performance will be impacted by the source of feed phosphates used in the diet.
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INTRODUCTION

Phosphorus (P) is a macro mineral needed for bone mineralization and cell membrane 
structure and P is also involved in several fundamental pathways of metabolism in the 
body. Phosphorus nutrition has been studied more intensely than the nutrition of any 
other mineral due to its importance in nutrition, high cost, and potential for contributing 
to pollution of the external environment [1].
 Dietary P can be provided by feed ingredients of plant or animal origin. Plant ingredients 
used in poultry and swine nutrition are mainly grains and co-products from oilseeds, but 
grain co-products are also used. The concentration of P in cereal grains ranges from 0.18% 
(polished rice) to 0.38% (triticale), whereas for grain co-products, P concentration ranges 
from 0.24% (corn gluten meal) to 2.58% (defatted rice bran), and for oilseed meals from 
0.52% (palm kernel expellers) to 1.22% (dehulled sunflower meal) [2]. However, up to 
92% of total P in plant feed ingredients is phytate-bound [2-4], which results in low utili-
zation of P from plants by poultry and pigs [5,6]. Fish meal, meat and bone meal, blood 
meal, and co-products of milk are the main animal-origin ingredients that are used in 
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poultry and swine diets [7-9]. Because P in animal-origin 
ingredients is not bound to phytate, it is highly digestible to 
pigs whereas P from plants generally has low digestibility 
[1,5]. However, animal-origin ingredients are mostly used 
for weanling pigs, whereas diets for growing-finishing pigs, 
sows, and poultry primarily contain plant ingredients.
 Because of the low concentration and digestibility of P in 
plant ingredients, feed phosphates are usually included in 
diets for pigs and poultry in addition to the P contributed by 
plant- and animal-origin ingredients [10]. Mineral concen-
trations, digestibility values, and physicochemical characteristics 
of feed phosphates are therefore of importance to the poul-
try and swine feed industry. However, summarized data on 
characteristics and P digestibility in feed phosphates fed to 
poultry and pigs are limited. Therefore, the objective of the 
current work was to review current knowledge about feed 
phosphates used in the poultry and swine feed industries 
and to summarize data on P digestibility in feed phosphates 
fed to pigs and poultry.

FEED PHOSPHATES USED IN POULTRY 
AND SWINE NUTRITION

The most widely used feed phosphates are dicalcium phos-
phate (DCP) and monocalcium phosphate (MCP) [11], but 

tricalcium phosphate (TCP), monosodium phosphate (MSP), 
and magnesium phosphate (MgP) may be used as well [12-
14].
 Concentrations of P in feed phosphates range from 14.8% 
(MgP) to 25.7% (MSP; Table 1). The concentration of dry 
matter (DM) in DCP, MCP, MgP, and MSP is greater than 
90% and the concentration of ash is greater than 78%. The 
difference between DM and ash is a result of the loss of crys-
talline water, carbon dioxide, and volatile minerals during 
the ashing procedure [12,15]. Crystalline water originates 
from some of the phosphate salts in feed phosphates, whereas 
carbon dioxide is lost from carbonates that usually also are 
present in feed phosphates.

Dicalcium phosphate and monocalcium phosphate
Feed phosphates are products of the wet processing crushing 
of phosphate rock from volcanic or sedimentary origin. Phos-
phorus is extracted from the rock and released in the form 
of phosphoric acid (H3PO4) after reaction of the rock with 
sulfuric acid although hydrochloric acid may also be used 
(Figure 1) [16,17]. A second reaction in which phosphoric 
acid is reacted with calcium carbonate (CaCO3) results in 
the production of DCP (CaHPO4) and MCP [Ca(H2PO4)2; 
Figure 2] [18]:

Table 1. Concentrations of macro- and micro-minerals in feed phosphates1)

Item DCP MCP TCP MSP MgP

Dry matter (%) 94.9 ± 0.60 93.0 ± 0.78 - 99.2 ± 0.41 96.6
Ash (%) 83.3 ± 1.41 79.6 ± 0.62 - 88.3 ± 3.03 86.4
Macro minerals (%)

Ca 21.3 ± 2.40 16.7 ± 0.44 34.2 0.7 ± 0.45 1.0
P 19.2 ± 0.28 21.9 ± 0.86 17.7 25.7 ± 1.95 14.8
Mg 0.7 ± 0.51 0.7 ± 0.42 0.4 < 0.1 24.7
Na < 0.1 < 0.1 6.0 20.5 ± 0.00 0.7
K 0.1 ± 0.02 0.1 ± 0.02 - < 0.1 0.1
S 0.4 ± 0.21 0.2 ± 0.07 - < 0.1 1.7

Micro minerals
Co (mg/kg) 3.1 ± 2.21 3.0 ± 2.21 - < 2.3 4.0
Cu (mg/kg) 7.7 ± 6.77 8.7 ± 7.20 - < 0.6 2.0
F (%) 0.1 ± 0.02 0.2 ± 0.04 - < 0.1 0.1
Fe (%) 0.7 ± 0.50 0.6 ± 0.44 - < 0.3 0.3
Mn (%) 0.04 ± 0.02 0.04 ± 0.02 - < 0.1 < 0.1
Zn (mg/kg) 89.0 ± 66.03 123.4 ± 72.28 - 28.0 ± 27.00 50.0

Other minerals (mg/kg)
Al 553.4 ± 452.59 437.1 ± 492.14 - 1,124 ± 456.00 161.0
As 5.7 ± 1.48 6.0 ± 3.26 - 1.0 ± 0.60 1.0
Cd 3.1 ± 2.41 3.5 ± 2.52 - 0.3 ± 0.08 0.2
Hg < 0.1 < 0.1 - < 0.1 < 0.1
Pb 0.8 ± 0.30 1.2 ± 1.14 - 0.1 ± 0.04 0.2
Si 3,159 ± 1,753 3,496 ± 2,047 - 387.5 ± 26.50 17,300

Free H2O (%) < 0.2 < 0.1 - < 0.1 < 0.1

DCP, dicalcium phosphate; MCP, monocalcium phosphate; TCP, tricalcium phosphate; MSP, monosodium phosphate; MgP, magnesium phosphate.
1) Information on analyzed concentrations of minerals in DCP, MCP, MSP, and MgP were from 4, 7, 2, and 1 sources, respectively [49]; values for concentra-
tions of minerals in TCP were obtained from NRC [3].
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 DCP: H3PO4 + CaCO3 → H2O + CO2 + CaHPO4,
 MCP: 2(H3PO4) + CaCO3 → H2O + CO2 + Ca(H2PO4)2.

 The reaction of phosphoric acid with calcium carbonate 
will naturally reach a chemical equilibrium that results in a 
mixture of DCP and MCP [19,20]. In commercial sources of 
calcium phosphates that are produced in the U.S., Ca concen-
trations are more variable among different sources compared 
with concentrations of P because the reaction between phos-
phoric acid and calcium carbonate is stopped according to 

the amount of total P desired in the final product. Producers 
of DCP and MCP have to guarantee a minimum concentra-
tion of P in the final products, which is controlled by the 
amount of phosphoric acid that is added to calcium carbonate. 
The reaction is usually stopped at 18.5% P to produce DCP, 
but the reaction continues until the product contains 21.0% 
P if MCP is produced. Therefore, final products have a relatively 
constant concentration of P, but variations in Ca concentra-
tions are often observed. However, because the production 
of DCP and MCP is a continuous process, feed phosphates 
that are sold as DCP or MCP usually contain both DCP and 
MCP and the only difference is that there is less DCP in a 
product designated as MCP than if the product is designated 
as DCP [19,21]. Dicalcium phosphate can be present in both 
anhydrate (CaHPO4) and hydrate forms (CaHPO4·H2O or 
CaHPO4·2H2O), but MCP exists mainly in a monohydrate 
form [Ca(H2PO4)2·H2O]. Neutralization of phosphoric acids 
with calcium carbonate results in a slurry that contains DCP 
in the hydrated form, but heating at 65°C to 70°C is needed 

Figure 1. Production of phosphoric acid.
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Figure 2. Production of DCP and MCP. DCP, dicalcium phosphate; MCP, monocalcium phosphate.
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Table 2. Mineral composition of commercial dicalcium phosphate (DCP) and monocalcium phosphate (MCP)1)

Component (%) Chemical formula DCP MCP

Calcium carbonate CaCO3 6.74 6.00
DCP and MCP

MCP Ca(H2PO4)2·H2O 14.19 60.98
DCP CaHPO4 26.42 12.54
Dihydrated DCP CaHPO4·2(H2O) 34.65 -

Others
Phosphoric acid H3PO4 0.80 1.00
Silica SiO2 0.15 0.13
Calcium fluoride CaF2 0.32 0.44
Sodium phosphate NaH2PO4·2(H2O) 0.54 0.61
Free water H2O 0.80 1.00
Aluminum phosphate AlPO4 2.21 2.48
Ferrous phosphate FePO4·2(H2O) 2.65 2.98
Calcium sulfate CaSO4·H2O 3.51 3.95
Magnesium phosphate Mg(H2PO4)2·4(H2O) 7.02 7.89

Total  100.00 100.00
1) Adapted from [19].
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to dry the slurry, which results in some of the hydrated DCP 
becoming anhydrated DCP (CaHPO4). In commercial DCP, 
approximately 35% is in the dihydrated form (Table 2). 
 In pure sources of DCP (molecular weight = 136.1 g/mol) 
and MCP (molecular weight = 234.05 g/mol), concentrations 
of P are 22.8% and 26.5%, respectively, and concentrations 
of Ca are 29.5% and 17.1%, respectively. However, feed grade 
sources of these ingredients have lower concentrations of P 
and Ca. The reason is that minerals other than Ca and P are 
present in feed grade phosphates along with unreacted calci-
um carbonate. Therefore, although the process of producing 
feed grade MCP and DCP is designed to eliminate impuri-
ties that may be harmful to animals, other minerals are usually 
present in feed phosphates, which is often due to impurities 
in the calcium carbonate that is used in the production pro-
cess. Some of the minerals considered impurities in feed 
phosphate such as Mg, S, Fe, Al, and Na can form phosphate 
salts including magnesium phosphate [Mg(H2PO4)2∙4H2O], 
calcium sulfate (CaSO4∙H2O), ferrous phosphate (FePO4∙2H2O), 
aluminum phosphate (AlPO4), and others [19]. Therefore, 
the calcium phosphates typically used in the feed industry 
contain several minerals other than P and Ca.

Tricalcium phosphate
Tricalcium phosphate [Ca3(PO4)2] is produced by reacting 
phosphoric acid with calcium carbonate to form calcium di-
hydrogen phosphite [Ca(H2PO3)2] followed by calcination 
above 900°C:

 Ca(H2PO3)2 + 2Ca(OH)2 + natural gas → (calcination) → 
Ca3(PO4)2.

 When the phosphoric acid is neutralized, calcium phos-
phate hydroxyapatite, Ca10(PO4)6(OH)2, is also formed [22,23]. 
The pure forms of TCP and hydroxyapatite are not used in 
animal feeds, but defluorinated rock phosphate, which is 
commercially available, is known as feed grade TCP because 
it mainly contains TCP [12]. By applying the high temperature 
during the calcination process, sulfur or fluorine that are 
considered harmful to animals are mostly removed [24], but 
some Na from the original rock remains in the final product 
(<5.5%) [12]. Feed-grade TCP is used in poultry diets, but it 
is not frequently included in diets for pigs in North America. 
However, some countries in Asia use TCP as source of Ca 
and P in diets for pigs.

Monosodium phosphate
Monosodium dihydrogen phosphate is produced from the 
reaction of phosphoric acid and sodium hydroxide or car-
bonate [20]. The reaction between phosphoric acid and 
sodium hydroxide (NaOH) or sodium carbonate (Na2CO3) 
is the initial reaction to produce MSP and depending on 

the manufacturer, different reagents are used:

 Using NaOH: H3PO4 + 3NaOH → Na3PO4 + 3H2O
 Using Na2CO3: 2H3PO4 + 3Na2CO3 → 2Na3PO4 + 3H2CO3.

 The end product of the initial reactions is trisodium phos-
phate (Na3PO4), but treatment with water in scrubbers results 
in the production of monosodium dihydrogen phosphate 
(NaH2PO4; Figure 3) [25].
 The concentration of P in feed grade MSP is greater than 
24% [3]. Requirements for Na can be met by the inclusion of 
salt in the diets, which also will result in Cl meeting the re-
quirement [3], and MSP is, therefore, rarely used as a source 
of Na in practical diets for pigs. However, MSP is sometimes 
used in research diets for pigs and because of the high digest-
ibility of P in MSP, it is often used as the standard to estimate 
the relative bioavailability of P in different feed ingredients 
[11,26,27].

Magnesium phosphate
Magnesium phosphate (MgHPO4) may be produced by a 
double decomposition reaction between disodium phosphate 
and magnesium salts or by neutralizing solutions containing 
magnesium salts and phosphoric acids with caustic soda 
(NaOH; Figure 4) [22]. Most MgP salts are in hydrated forms 
(MgHPO4·H2O). Commercial MgP often has a greater con-
centration of S than other feed phosphates, but even if MgP 
is used to provide the majority of P in diets, the concentra-
tion of S will be less than the concentration that is expected 

Figure 3. Chemical structures of MSP (NaH2PO4). monosodium 
phosphate; MSP, monosodium phosphate.
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to negatively affect growth of pigs due to the low inclusion of 
feed phosphates in the final diets and the relatively low ab-
sorption of S in the pig [3,28]. Magnesium is usually not added 
to practical diets for pigs, but MgP is sometimes used in 
mineral premixes if feed ingredients with low availability of 
Mg are used [3]. Magnesium phosphate is also used in animal 
nutrition, especially in ruminants, because deficiency of Mg 
is more common in forage-based diets for ruminant animals. 
The trihydrate form [MgHPO4·3(H2O)] is the only stable form 
at 25°C.

DIGESTIBILITY OF P IN FEED 
PHOSPHATES 

Determination of digestibility of P in pigs and poultry
Historically, values for the relative bioavailability of P in feed 
ingredients were generated using MSP or MCP as the stan-
dard [29] and these values were used to formulate diets for 
pigs [30]. However, values for the relative bioavailability of P 
are not always additive in mixed diets, and values vary de-
pending on the digestibility of P in the standard [11]. It was, 
therefore, recognized that formulating diets based on values 
for digestible P is more accurate than using values for the 
relative bioavailability of P [3].
 Because P is mostly absorbed before the end of the small 
intestine, there is no difference between values for ileal di-
gestibility and total tract digestibility of P [31-33], although 
some hindgut disappearance of P in pigs has been reported 
([34-36]). Because it is easier and less expensive to measure 
total tract digestibility of P than ileal digestibility of P, total 
tract digestibility of P is usually measured. By correcting the 
apparent total tract digestibility of P for the basal endogenous 
losses of P, values for the standardized total tract digestibility 

(STTD) of P are calculated. Values for the STTD of P are not 
influenced by the concentration of P in the diet and those 
values are, therefore, not underestimated if the concentra-
tion of P in the diet is low [37]. Values for the STTD of P are 
also additive in a mixed diet [38,39], which is a prerequisite 
for accurate diet formulation. It is, therefore, recommended 
that diets for pigs are formulated based on the STTD of P in 
individual ingredients [3].
 Values for total tract digestibility of P in poultry are diffi-
cult to obtain because the excreta of chickens contains both 
fecal and urine excretions. Therefore, ileal digestibility of P in 
feed ingredients fed to poultry may be determined to exclude 
urinary excretion in the excreta [40]. Because values for stan-
dardized ileal digestibility (SID) of P are additive [41] and 
are not affected by dietary P [40], the SID of P in various feed 
ingredients fed to broilers has been determined. However, 
information on the SID of P in feed phosphates fed to poultry 
is limited. 

STTD and SID of P in feed phosphates fed to pigs and 
broiler chickens
Values for the STTD of P vary among different feed phos-
phates fed to pigs (Figure 5). Among calcium phosphates, 
the STTD of P in MCP (93%) is the greatest, followed by 
DCP (89%) and TCP (71%). The SID of P in feed phosphates 
has been determined only in one experiment. Among DCP, 
MCP, and TCP, the SID of P in MCP (89.3%) is the greatest, 
followed by DCP (79.5%) and TCP (56.7%) if the feed phos-
phates are fed to broilers chickens [42].
 It appears that P in a calcium phosphate is better digested 
and absorbed if the calcium phosphate contains less Ca. This 
may be a result of the interaction between dietary Ca and P, 
which forms an indigestible Ca-P complex that precipitates 

Figure 5. Standardized total tract digestibility (STTD) of P (%) in feed phosphate fed to pigs. DCP, dicalcium phosphate; MCP, monocalcium phos-
phate; TCP, tricalcium phosphate; MSP, monosodium phosphate; MgP, magnesium phosphate. Data from Petersen and Stein [21]; NRC [3]; Baker 
et al [54]; Kwon and Kim [48]; and Lopez [49].
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in the intestinal tract of pigs [43,44], but more research is 
needed to confirm this hypothesis. Most commercial DCP is 
in the anhydrous form, but (di-)hydration of P molecules 
may increase the digestibility of P in DCP fed to pigs, because 
hydrated DCP is more soluble in the intestinal tracts, and 
thus has a greater digestibility, than the anhydrous form [5, 
10,45-47].
 The STTD of P in MgP (88%) fed to pigs is less than in 
MCP and MSP, but greater compared with TCP. The STTD 
of P in MSP is greater than in calcium phosphates or MgP 
[3,21,48,49]. This observation is likely the reason MSP was 
often used as the standard in experiments conducted to de-
termine the relative bioavailability of P in feed ingredients.

STTD and SID of Ca in DCP and MCP fed to pigs and 
broiler chickens
The STTD of Ca in feed ingredients has been determined 
because digestible Ca is more additive in mixed diets if values 
are corrected with endogenous losses [50]. Use of exogenous 
phytase may increase the STTD of Ca in calcium carbonate 
and some other feed ingredients, but that is not the case for 
the STTD of Ca in MCP and DCP [51,52]. However, the STTD 
of Ca in feed phosphates has been determined only in a few 
experiments. The STTD of Ca in MCP (86%) is likely greater 
than in DCP (77%) [51]. However, because of the greater 
concentration of Ca in DCP than in MCP, the concentration 
of standardized total tract digestible Ca in DCP is close to 
that in MCP. Variations in the STTD of Ca among different 
sources of DCP and MCP appear to be low [52].
 The SID by broiler chickens of Ca in DCP and MCP was 
summarized by Walk et al [53], although not many experi-
ments have determined the SID of Ca in feed phosphates 
fed to poultry. The SID of Ca in both DCP and MCP fed to 
broilers is 36%, which is much lower compared with pigs.

CONCLUSION

The current contribution discussed how feed phosphates are 
produced, how much P and other minerals are included in 
each feed phosphate, and how much P is utilized if they are 
fed to pigs and poultry. Production of feed phosphates has 
been designed to meet a minimum concentration of P using 
phosphate rock, which results in variations in concentrations 
of other minerals. Feed phosphate sources contain 15% to 
26% P and values for the STTD of P vary with different feed 
phosphates. Information on both mineral concentrations 
and digestibility values in feed phosphates is needed in diet 
formulation for pigs and poultry because each source con-
tains different concentrations of digestible P. However, if 
diets are formulated to contain equal concentrations of di-
gestible P and Ca, it is unlikely that animal performance will 
be impacted by the source of feed phosphates used in the diet.
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