
Journal of Animal Science, 2025, 103, skaf349
https://doi.org/10.1093/jas/skaf349
Advance access publication 10 October 2025
Non Ruminant Nutrition
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in growing pigs, but net energy tends to be greater in diets 
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Abstract
The objective was to test the hypothesis that reducing dietary crude protein in corn-soybean meal (SBM) diets will not increase dietary net energy 
(NE) and will not affect growth performance, carcass composition, nutrient deposition, intestinal morphology, blood cytokine concentrations, or the 
mRNA abundance of intestinal amino acid (AA) transporters. A corn-SBM-based diet was prepared, and three additional diets were formulated by 
reducing SBM inclusion, increasing corn, and adding three, four, or five synthetic AA (Lys, Met, Thr, Trp, and Val), resulting in diets with protein levels 
of 20.0, 16.4, 15.4, and 13.4%, respectively. All diets were formulated to meet requirements for standardized ileal digestible indispensable AA. A 
total of 176 pigs (initial weight: 32.2 ± 4.2 kg) were used. On day 1, 16 randomly chosen pigs were euthanized, and body nutrient composition was 
determined. The remaining 160 pigs were allotted to the four experimental diets with four pigs per pen and 10 replicate pens per diet. Diets were 
provided for 28 d. One pig per pen was slaughtered on day 29, and blood, carcass, and viscera were collected and analyzed for nitrogen, fat, and 
energy to calculate nutrient deposition. Samples of blood were also analyzed for total protein, albumin, plasma urea nitrogen, and cytokines. Samples 
of ileal mucosa, ileum and colon tissue, and ileum and colon digesta were collected, and tissue morphology, and mRNA abundance of AA trans-
porters were determined. Results indicated that average daily gain, average daily feed intake, gain-to-feed ratio, carcass characteristics, and protein, 
lipid, and energy depositions were not affected by reducing dietary crude protein, but NE in diets tended to decrease (linear, P = 0.051). Blood urea 
nitrogen was reduced (linear, P < 0.001) as dietary protein levels were reduced, but blood total protein or albumin was not affected by dietary protein 
levels. Blood cytokines, jejunal and ileal morphology, ammonia in ileal and colon digesta, and mRNA abundance of AA transporters in ileal mucosa 
were also not affected by the treatments. Bacterial protein in colon digesta decreased (linear, P = 0.030) by reducing dietary protein levels. In con-
clusion, reducing dietary protein levels did not affect growth performance, carcass composition, nutrient deposition, intestinal morphology, blood 
cytokines, or mRNA abundance of AA transporters in growing pigs, but NE of diets tended to reduce as dietary protein levels were reduced.

Lay Summary
The hypothesis that reducing dietary crude protein in corn-soybean meal-based diets will not increase net energy (NE) in diets and will not affect 
growth performance, carcass composition, nutrient deposition, intestinal morphology, or immune status of pigs was tested. Four diets were 
formulated with decreasing soybean meal inclusion and increasing corn and synthetic amino acids (AA), resulting in protein levels of 20.0, 16.4, 
15.4, and 13.4%, respectively. Pigs (initial weight: 32.2 ± 4.2 kg) were fed these diets for 28 days with samples collected to assess body compo-
sition, intestinal morphology, blood markers, and mRNA abundance of AA transporters. Results indicated that reducing dietary protein levels did 
not impact any of the analyzed pig characteristics, but NE tended to decrease as soybean meal in the diet was reduced. In conclusion, growth 
performance can be maintained on low-protein diets with synthetic AA supplementation, but reducing dietary protein levels may decrease NE 
values in diets.
Key words: amino acids, carcass composition, net energy, pigs, protein, soybean meal
Abbreviations: AA, amino acids; ADFI, average daily feed intake; ADG, average daily gain; cDNA, complementary deoxyribonucleic acid; EDTA, ethylenedi-
aminetetraacetic acid; G:F, gain-to-feed ratio; IL, interleukin; ISG, initial slaughter group; NE, net energy; qRT-PCR, quantitative reverse-transcription polymerase 
chain reaction; RNA, ribonucleic acid; SBM, soybean meal; SLC3A2, solute carrier family 3 member 2; SLC6A14, solute carrier family 6 member 14; SLC6A19, solute 
carrier family 6 member 19; ; TNF-α, tumor necrosis factor alpha 

Introduction
Diets for growing pigs based on soybean meal (SBM) and cereal 
grains typically meet amino acid (AA) requirements and max-
imize growth performance and protein synthesis. However, 

over the past few decades, the use of synthetic AA has increased, 
whereas the inclusion of SBM has been reduced, resulting in 
diets with lower protein levels (Pope et al., 2023). Historically, 
low-protein diets have been formulated using up to four 
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synthetic AA (i.e., Lys, Met, Thr, and Trp), but with advances 
in industrial AA production, more indispensable AA (i.e., Val, 
Ile, His, and Arg) are now commercially available in feed grade 
form and may be included in low-protein diets (Wang et al., 
2018; Duarte et al., 2024).

Regardless of if AA are supplied by SBM or synthetic sources, 
it is assumed that protein and energy deposition occur at similar 
rates as long as AA requirements are met (Che et al., 2017; 
Wang et al., 2018). However, results of recent research indicate 
that daily nitrogen retention may decrease when pigs are fed 
diets with less SBM and more synthetic AA, compared with 
diets containing more SBM (Gloaguen et al., 2014; Zhao et al., 
2019; Cristobal et al., 2025). This may indicate either an AA 
deficiency in diets with synthetic AA or that there are com-
pounds in SBM, beyond AA, that are beneficial for pigs. In 
addition to AA, SBM provides other functional components, 
such as polyphenols, terpenoids, bioactive peptides, dietary 
fiber, oligosaccharides, and functional lipids, that may offer 
anti-inflammatory, antimicrobial, antioxidant, or immuno-
modulatory effects for pigs (Smith and Dilger, 2018; Boyd et 
al., 2023; Petry et al., 2024). Another possible explanation is 
that AA from intact proteins, such as SBM, are digested more 
slowly than synthetic AA, which improves synchronization of 
AA supply for protein synthesis. In contrast, free AA from 
synthetic sources may be absorbed rapidly, which may create 
temporary imbalances if not all indispensable AA needed for 
protein synthesis are available in the cells at the same time, 
thereby increasing their oxidation rather than incorporation 
into body protein (Trottier, 2006; Selle et al., 2020).

The shift from intact protein to more synthetic AA may result 
in a compensatory increase in AA transporters or changes in 
the intestinal morphology to facilitate the absorption of free 
AA  (Morales et al., 2015). However, there is a lack of data for 
mRNA abundance of AA transporters or morphology in dif-
ferent sections of the small intestine of pigs fed diets based on 
either intact protein or synthetic AA (Morales et al., 2015; 
Wang et al., 2018).

Reducing crude protein in corn-SBM diets by decreasing SBM 
inclusion and increasing corn, while supplementing with syn-
thetic AA, is believed to increase the net energy (NE) of the diets 
because corn contains more NE than SBM (NRC, 2012). How-
ever, results of recent experiments indicate that the NE in SBM 
may have been underestimated and is close to the NE in corn 
(Cemin et al., 2020; Boyd et al., 2023; Cristobal et al., 2024). 
Therefore, if the NE in SBM is close to that of corn, it is expected 
that dietary NE will not increase if more corn and less SBM is 
used in diets, but validation of this hypothesis is lacking.

Therefore, the objective of this experiment was to test the 
hypothesis that reducing crude protein by reducing the inclu-
sion of SBM in corn-SBM-based diets will not increase dietary 
NE and will not affect growth performance, carcass composi-
tion, protein and energy deposition, intestinal morphology, 
blood cytokine concentrations, or the mRNA abundance of 
intestinal AA transporters.

Materials and Methods
The Institutional Animal Care and Use Committee at the Uni-
versity of Illinois reviewed and approved the protocol for the 
experiment before animal work was initiated. Pigs were the 
offspring of Line 800 boars and Camborough females (Pig 
Improvement Company, Hendersonville, TN, USA).

Dietary treatments
A control diet was formulated based on corn and SBM without 
synthetic AA. Three additional diets were formulated by reduc-
ing the inclusion rate of SBM and adding more corn and three 
synthetic AA (i.e., Lys, Met, and Thr), four synthetic AA (i.e., 
Lys, Met, Thr, and Trp), or five synthetic AA (i.e., Lys, Met, 
Thr, Trp, and Val) to the diet. Therefore, a total of four diets 
were used (Table 1). Concentrations of standardized ileal 
digestible indispensable AA and all other nutrients were at or 
above requirements for growing pigs in all diets (NRC, 2012), 
but the concentration of crude protein was reduced from 
20.0% in the control diet to 16.4%, 15.4%, or 13.4% in diets 
containing three, four, or five synthetic AA.

Animals, housing, feeding, and growth 
performance
A total of 176 growing pigs (average initial body weight: 
32.2 ± 4.2 kg) were used in the experiment. Among these, 16 
pigs (eight gilts and eight barrows) were randomly selected at 
the start of the experiment and designated as an initial slaughter 
group (ISG) to determine the initial body nutrient composition 
of pigs. The remaining 160 pigs were allotted to the four diets 
using a randomized complete block design with four pigs per 
pen (two gilts and two barrows) and 10 replicate pens per diet. 
Starting weight was used as the blocking factor. Pigs were 
housed in a mechanically ventilated grower unit, where pens 
had partly slatted concrete floors and were equipped with a 
feeder and a nipple drinker. Water and experimental diets were 
provided to pigs on an ad libitum basis for 28 d. Individual pig 
weights were recorded at the beginning of the experiment and 
at the conclusion of the experiment on day 29. Feed additions 
were recorded daily, and the weight of feed left in the feeder 
was recorded on day 29. Data were summarized to calculate 
final body weight, average daily feed intake (ADFI), average 
daily gain (ADG), and gain:feed ratio (G:F) within each pen 
and treatment group.

Sample collection and analysis
At the conclusion of the experiment, one gilt or barrow (aver-
age final body weight: 61.1 ± 8.4 kg) was randomly selected 
from each pen, for a total of 20 gilts and 20 barrows. In each 
pen, the selected pig was the one whose body weight was closest 
to the pen average. Two blood samples were collected from the 
jugular vein of each selected pig without prior fasting. One 
blood sample was collected in heparinized vacutainers, whereas 
the other sample was collected in vacutainers containing eth-
ylenediaminetetraacetic acid (EDTA). After sample collection, 
the selected pigs were transported to the Meat Science Labo-
ratory at the University of Illinois and slaughtered after an 
overnight fast. Pigs were euthanized via head to heart electric 
stunning followed by exsanguination. Blood was quantitatively 
collected from each pig. A sample of 50 mL of blood was col-
lected for body compositional analysis.

Euthanized pigs were scalded, dehaired, and singed to 
remove all hair from the carcass; toenails, tail, and head were 
then removed. Weights of organs (i.e., heart, kidneys, liver, gall 
bladder, spleen, lungs, and gastrointestinal tract) were recorded. 
Within 15 min after euthanasia, the gastrointestinal tract was 
emptied and rinsed with water, and the empty weights of the 
stomach, small intestine, and large intestine were recorded. 
Before emptying the intestinal tract, digesta samples from the 
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small intestines and colon were collected for ammonia analysis. 
For each sample, 3 mL of digesta were collected in 25-mL tubes, 
and 3 mL of HCl were added as a preservative. Concentration 
of protein was also analyzed in colon digesta.

The carcass was divided down the midline from the groin to 
the chest cavity. One half of each carcass was used to determine 
hot carcass weight, dressing percentage, and chilled carcass 
weight. For body composition analysis, the body was 

Table 1.  Ingredient composition of experimental diets and analyzed nutrient composition of ingredients and experimental diets formulated to different 
concentrations of soybean meal (SBM) and crude protein, as-fed basis1

Item Ingredients Diets

Corn SBM2

20.0% crude  
protein

16.4% 
crude protein

15.4% 
crude protein

13.4% 
crude protein

Ingredient, %
  Ground corn – – 60.40 70.27 71.40 75.11
  Soybean meal – – 34.50 24.00 22.80 18.75
  Soybean oil – – 2.50 2.50 2.50 2.50
  Dicalcium phosphate – – 0.90 1.10 1.10 1.15
  Ground limestone – – 0.80 0.75 0.75 0.75
  L-Lys-HCl – – – 0.32 0.35 0.47
  DL-Met – – – 0.08 0.09 0.12
  L-Thr – – – 0.08 0.10 0.15
  L-Trp – – – – 0.01 0.03
  L-Val – – – – – 0.07
  Sodium chloride – – 0.40 0.40 0.40 0.40
  Vitamin-mineral premix3 – – 0.50 0.50 0.50 0.50
Analyzed nutrients
  Dry matter, % 86.95 89.80 88.49 89.73 88.16 88.55
  Crude protein, % 7.80 45.18 20.02 16.36 15.38 13.40
  Gross energy, kcal/kg 3,819 4,204 3,976 3,936 3,924 3,963
  Acid-hydrolyzed ether extract, % 2.53 1.76 5.17 4.49 4.15 4.62
  Starch, % 64.50 – 39.75 45.88 46.58 48.88
  Total dietary fiber, % 15.10 23.10 17.70 18.20 18.50 17.00
   Soluble dietary fiber, % 2.50 3.4 2.40 2.10 2.00 2.80
   Insoluble dietary fiber, % 12.6 19.7 15.30 16.10 16.50 14.20
  Ash, % 1.32 6.19 4.65 4.27 4.21 4.05
Indispensable amino acids, %
  Arg 0.35 3.31 1.25 0.94 0.98 0.93
  His 0.23 1.23 0.50 0.40 0.41 0.39
  Ile 0.27 2.05 0.85 0.69 0.69 0.65
  Leu 0.91 3.48 1.58 1.35 1.39 1.32
  Lys 0.24 2.84 1.07 1.09 1.08 1.11
  Met 0.17 0.63 0.28 0.28 0.31 0.36
  Phe 0.37 2.30 0.95 0.77 0.79 0.75
  Thr 0.27 1.79 0.70 0.63 0.67 0.64
  Trp 0.06 0.63 0.34 0.23 0.26 0.25
  Val 0.36 2.14 0.92 0.75 0.75 0.80
Dispensable amino acids, %
  Ala 0.57 1.98 0.87 0.82 0.82 0.75
  Asp 0.51 5.19 1.81 1.56 1.56 1.35
  Cys 0.18 0.67 0.27 0.26 0.27 0.26
  Glu 1.40 8.20 3.16 2.82 2.83 2.54
  Gly 0.29 1.91 0.73 0.65 0.65 0.58
  Pro 0.67 2.43 1.03 0.97 0.97 0.90
  Ser 0.36 2.27 0.75 0.68 0.69 0.61
  Tyr 0.25 1.53 0.58 0.52 0.52 0.47
Total amino acids, % 7.46 44.58 17.64 15.41 15.40 14.66

1Diets containing 20.0, 16.4, 15.4, or 13.4% crude protein were formulated to contain 3,401, 3,391, 3,389, and 3,382 kcal metabolizable energy per kg 
(as-fed basis), respectively, and the following quantities of standardized ileal digestible amino acids: Lys, 0.98, 0.98, 0.98, and 0.98%; Met, 0.28, 0.32, 0.32, 
and 0.33%; Thr, 0.65, 0.59, 0.59, and 0.59%; Trp, 0.23, 0.17, 0.17, and 0.17%, and Val, 0.82, 0.65, 0.64, and 0.64%.
2Sugar composition (%): glucose, 0.05; sucrose, 6.27; maltose, 0.13; fructose, 0.07; stachyose, 5.61; raffinose, 1.64. Trypsin inhibitor units per mg: 3.42.
3The vitamin–mineral premix provided the following quantities of vitamins and micro-minerals per kilogram of complete diet: Vitamin A as retinyl acetate, 
11,150 IU; vitamin D3 as cholecalciferol, 2,210 IU; vitamin E as DL-alpha tocopheryl acetate, 66 IU; vitamin K as menadione nicotinamide bisulfate, 1.42 mg; 
thiamin as thiamine mononitrate, 1.10 mg; riboflavin, 6.59 mg; pyridoxine as pyridoxine hydrochloride, 1.00 mg; vitamin B12, 0.03 mg; D-pantothenic acid as 
D-calcium pantothenate, 23.6 mg; niacin, 44.1 mg; folic acid, 1.59 mg; biotin, 0.44 mg; Cu, 20 mg as copper chloride; Fe, 125 mg as iron sulfate; I, 1.26 mg as 
ethylenediamine dihydriodide; Mn, 60.2 mg as manganese hydroxychloride; Se, 0.30 mg as sodium selenite and selenium yeast; and Zn, 125.1 mg as zinc 
hydroxychloride.
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partitioned into three components: carcass, blood, and viscera. 
The carcass consisted of skin, lean tissue, and fat tissue, without 
all bones. Blood included all blood collected during exsangui-
nation. Viscera comprised the liver, heart, kidneys, lungs, spleen, 
and the emptied stomach, small intestine, and large intestine.

Jejunal and ileal tissue samples were collected (about 5 cm 
in length) approximately 200 cm distal to the pylorus and 80 cm 
caudal to the ileal-cecal junction, respectively. The jejunal and 
ileal tissue samples were opened longitudinally along the mes-
enteric attachment, rinsed with phosphate buffered saline, 
pinned serosa side down on a piece of cardboard (Nabuurs et 
al., 1993), and then fixed by immersion in 10% neutral buff-
ered formalin. These tissue samples were delivered to the Vet-
erinary Diagnostic Laboratory at the University of Illinois 
(Urbana, IL, USA) within 24 h post fixation to be sectioned and 
transferred to slides. After fixation, the intestinal tissues were 
embedded in paraffin, sectioned at 5 µm, and stained with 
hematoxylin and eosin (Pluske et al., 1996). Villus height and 
crypt depth of the jejunum and ileum were measured from 10 
straight and integrated villi and their associated crypts in each 
sample using Nanozoomer Digital Pathology View2 (Ham-
matsu, Bridgewater, NJ, USA) as described by Liu et al. (2018).

Ileal mucosa samples were also collected and mRNA abun-
dance of AA transporters including solute carrier family 3 
member 2 (SLC3A2; rBAT), solute carrier family 6 member 14 
(SLC6A14; ATB°,+), and solute carrier family 6 member 19 
(SLC6A19; B°AT) were determined in these samples. Samples 
were washed with phosphate-buffered saline, scraped gently, 
snap-frozen in liquid nitrogen, and stored at –80°C until used 
for ribonucleic acid (RNA) extraction and quantitative 
reverse-transcription polymerase chain reaction (qRT-PCR) as 
described by Espinosa et al. (2021).

Weights of muscle and fat tissues and skin from the left side 
of the carcass were recorded the day after pigs were slaugh-
tered. Because one side was used, the weights of muscle and 
fat tissues and skin were calculated by multiplying the recorded 
weights from the left half of the carcass by two, and the sum 
was assumed to represent the weight of the total carcass.

Samples of viscera, muscle, fat, skin, and blood from exsan-
guination were stored at −20°C until processing. Prior to lyo-
philization, samples were frozen at −80°C for 8 h and then 
lyophilized for 70 h. Lyophilized samples were ground using a 
swing-type grain mill (model: RRH-500, Zhejiang Winki Plastic 
Industry Co., Ltd, Zhejiang, China). Samples were analyzed for 
dry matter (method 930.15; AOAC Int, 2019) and for nitrogen 
using the combustion procedure (method 990.03; AOAC Int, 
2019) on a LECO FP628 (LECO Corp., Saint Joseph, MI, USA). 
Crude protein was calculated as analyzed nitrogen × 6.25. Gross 
energy in these samples was analyzed using bomb calorimetry 
(Model 6400; Parr Instruments, Moline, IL, USA), and 
acid-hydrolyzed ether extract was analyzed by acid hydrolysis 
using 3 N HCl (Ankom HCl Hydrolysis System, Ankom Tech-
nology, Macedon, NY, USA) followed by fat extraction (Ankom 
XT-15 Extractor, Ankom Technology, Macedon, NY, USA).

The blood samples collected in the vacutainer with EDTA 
were centrifuged at 4,000×g for 13 min to recover the plasma, 
which was then stored at –20 °C until analyzed. Heparinized 
plasma samples were analyzed for plasma urea nitrogen, total 
protein, and albumin, whereas plasma samples that contained 
EDTA were analyzed for cytokines [e.g., interleukin (IL) 1β, 
IL-10, IL-4, and tumor necrosis factor alpha (TNF-α)]. 
The  IL-1β and TNF-α were selected as representative 

pro-inflammatory cytokines, and IL-4 and IL-10 were selected 
as representative anti-inflammatory cytokines, because these 
four markers are among the most widely studied in swine and 
provide a general overview of the balance between pro- and 
anti-inflammatory immune responses in pigs (Limbach et al., 
2021; Duarte et al., 2024).

Plasma urea nitrogen, total protein, and albumin were ana-
lyzed using a Beckman Coulter Clinical Chemistry AU analyzer 
(Beckman Coulter Inc., Brea, CA, USA). Cytokines in plasma 
samples were analyzed using a sandwich enzyme-linked immu-
nosorbent assay kit according to manufacturer’s instructions 
(R&D Systems Minneapolis, MN, USA; Invitrogen, MA, USA).

Ammonia in digesta samples from the small intestines and colon 
was analyzed by gas chromatography using a Hewlett-Packard 
5890A Series II gas-liquid chromatograph (Agilent, Santa Clara, 
CA) and a glass column (180 cm by 64 mm i.d.). Digesta samples 
from the colon were also analyzed for microbial protein. Samples 
were fractionated using differential centrifugation (Metges et al., 
1999) and centrifuged at 250 relative centrifugal force for 15 min 
at 4°C, which separated fractions that contained undigested feed 
particles in the precipitate and porcine cells in the supernatant 
(Miner-Williams et al., 2009). The supernatant was centrifuged 
at 14,500 relative centrifugal force for 30 min at 4°C, which 
resulted in a precipitate that contained microbial cells 
(Miner-Williams et al., 2009). This precipitate was then subjected 
to a lysis buffer, which contained 100 mM of tris(hydroxymethyl)
aminomethane at pH 7.2, 0.5% sodium dodecyl sulfate, and 
0.5% sodium deoxycholate. The protein concentration of the 
lysed microbial cells was analyzed using Pierce Bicinchoninic Acid 
Assay Kit (ThermoFisher Scientific, Waltham, MA).

The RNA was extracted from 30 ± 0.2 mg of frozen ileal 
mucosa using β-mercaptoethanol (Sigma-Aldrich, St Louis, MO, 
USA) according to the RNeasy Mini Kit (QIAGEN, German-
town, MD, USA) manufacturer’s instructions and following the 
procedure described by Espinosa et al. (2021). Total RNA was 
quantified using a NanoDrop ND-1000 spectrophotometer 
(NanoDrop Technologies, Wilmington, DE, USA). The RNA 
quality was determined using a Fragment Analyzer Automated 
CE System (method DNF-471-33-SS Total RNA 15 nt; Advanced 
Analytical, Ankeny, IA, USA). The RNA samples with an RNA 
quality number greater than 7 were diluted to 100 ng/μL with 
DNase/RNase free water and used for complementary deoxyri-
bonucleic acid (cDNA) synthesis. The cDNA was then diluted 
1:4 with DNase/RNase-free water to conduct qRT-PCR analysis 
which was performed using 4 µL of diluted cDNA and 6 µL of 
a mixture including forward and reverse primers, SYBR Green 
master mix (Quanta Biosciences Inc., Gaithersburg, MD, USA), 
and DNase/RNase free water in a MicroAmpTM Optical 
384-Well Reaction Plate (Applied Biosystems, Foster City, CA, 
USA). Two internal control genes, glyceraldehyde 3-phosphate 
dehydrogenase and beta-actin (Nygard et al., 2007), were used 
to normalize the mRNA abundance of target genes. Target genes 
(ie, SLC3A2, SLC6A14, and SLC6A19) were analyzed to deter-
mine if dietary crude protein influences regulation of AA absorp-
tion and transport in the small intestine.

Chemical analysis of diets and ingredients
All diet and ingredient samples were ground using a swing-type 
grain mill (model: RRH-500, Zhejiang Winki Plastic Industry 
Co., Ltd, Zhejiang, China) prior to chemical analyses. Diet and 
ingredient samples were analyzed for dry matter, nitrogen, 
acid-hydrolyzed ether extract, and gross energy as described 
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for viscera, muscle, fat, skin, and blood. Crude protein in diet 
and ingredient samples was also calculated as analyzed nitro-
gen × 6.25. Diet and ingredient samples were also analyzed for 
ash (method 942.05; AOAC Int, 2019), and insoluble dietary 
fiber and soluble dietary fiber were analyzed on an Ankom 
Total Dietary Fiber Analyzer (Ankom Technology, Macedon, 
NY, USA) according to method 991.43 (AOAC Int, 2019). 
Total dietary fiber was calculated as the sum of insoluble and 
soluble dietary fiber. Amino acids in diet and ingredient samples 
were analyzed on a Hitachi Amino Acid analyzer (Model No. 
L8800; Hitachi High Technologies America, Inc., Pleasanton, 
CA, USA) using ninhydrin for postcolumn derivatization and 
norleucine as the internal standard [method 982.30 E(a, b, and 
c); AOAC Int, 2019]. Total starch was analyzed in corn and in 
diet samples using the glucoamylase procedure (method 
979.10; AOAC Int, 2019), whereas glucose, sucrose, maltose, 
fructose, stachyose, and raffinose were analyzed in SBM using 
high-performance liquid chromatography (method 977.2, 
AOAC Int, 2019). Soybean meal was also analyzed for trypsin 
inhibitors (method Ba 12-75; AOCS, 2006).

Calculations
The analyzed energy, protein, and lipids in blood, viscera, mus-
cle, fat, and skin samples were used to estimate total energy, 
protein, and lipids of viscera and blood. Total energy, protein, 
and lipids in the carcass were calculated as the sum of these 
components in muscle, fat, and skin. The total amount of 
energy, protein, and lipids in each pig at the conclusion of the 
experiment was calculated from the sum of the energy, protein, 
and lipids in the blood, viscera, and carcass. All values were 
calculated on a dry matter basis. Retention of energy, protein, 
and lipids was calculated from the difference between the aver-
age quantity of energy, protein, and lipids in the 16 pigs from 
the ISG and the quantity of energy, protein, and fat in the 
treatment pigs at the end of the 28-d experimental period.

Net energy in protein and lipids was calculated by multiply-
ing retained protein and lipids by 5.66 and 9.46 kcal/g, respec-
tively (Ewan, 2001). Net energy for growth was calculated as 
the sum of NE from retained protein and lipids. Daily NE for 
maintenance was calculated by multiplying the mean metabolic 
body weight (kg0.60) at the start and the conclusion of the exper-
iment by 179 kcal (Noblet et al., 1994). Net energy per kg of 
diet was calculated by dividing the sum of NE for growth and 
NE for maintenance by daily feed intake.

To calculate energy efficiency, daily energy intake was cal-
culated by multiplying ADFI of pigs by analyzed gross energy 
in diets. Energy efficiency for growth was then calculated by 

dividing retained energy in the total body by energy intake and 
multiplying by 100.

Statistical analysis
Data were analyzed using the MIXED Procedure in SAS (ver-
sion 9.4; SAS Inst. Inc., Cary, NC, USA). Homogeneity of the 
variances among treatments was confirmed using the UNIVAR-
IATE procedure. The MIXED procedure was used to generate 
studentized residuals, and outliers were defined as means with 
residuals greater than 3 or less than −3. All outliers that were 
identified and removed included one pig fed the diet with 
13.4% protein for the carcass composition analysis, one pig 
fed the diet with 20.0% protein for the IL-1β analysis, one pig 
fed the diet with 16.4% protein for the TNF-α analysis, one 
pig fed the diet with 15.4% for the ileal morphology analysis, 
and one pig fed the diet with 13.4% protein for the jejunal 
morphology analysis. In addition, four pigs fed each diet were 
identified as outliers for the mRNA abundance analysis. The 
pen was considered the experimental unit for growth perfor-
mance, whereas the individual pig was considered the experi-
mental unit for all other analyses. The statistical model included 
diet as fixed effect and replicate as random effects. Least square 
means were calculated, and orthogonal polynomial contrast 
coefficients were generated from the analyzed dietary crude 
protein using the Interactive Matrix Language procedure of 
SAS (version 9.4; SAS Inst. Inc., Cary, NC, USA). These coef-
ficients were used to test linear and quadratic effects of reducing 
dietary crude protein. Statistical significance and tendencies 
were considered at P < 0.05 and 0.05 ≤ P < 0.10, respectively.

Results
Pigs remained healthy during the experiment and no mortality 
or feed refusals were observed. Final body weight of pigs was 
not affected by dietary treatment (Table 2). Average daily gain 
and ADFI of pigs were not affected by reducing SBM and 
increasing synthetic AA in diets, which resulted in no differ-
ences in G:F. Live weight, hot carcass weight, dressing percent-
age, viscera weights, and digesta-free body weight were also 
not different among treatments (Table 3). However, chilled 
carcass weight tended to decrease (quadratic, P = 0.099) as 
dietary protein levels were reduced.

Retention of nutrients and energy
Weights of carcass, viscera, and blood were not affected by 
dietary treatments (Table 4). Concentrations of protein and fat 

Table 2.  Growth performance of growing pigs fed experimental diets.1

Item Dietary crude protein, % P-value2

20.0 16.4 15.4 13.4 SEM Linear Quadratic

Initial body weight, kg 32.17 32.29 32.20 32.18 – – –
Final body weight, kg 61.31 60.64 60.62 61.70 2.20 0.908 0.378
ADG3, kg/d 1.040 1.012 1.015 1.055 0.041 0.912 0.339
ADFI3, kg/d 2.116 2.207 2.147 2.234 0.072 0.133 0.914
G:F3 0.493 0.460 0.473 0.474 0.014 0.296 0.275

1Least squares means represent 10 observations per dietary treatment.
2P-values for orthogonal polynomial contrast.
3ADG = average daily gain; ADFI = average daily feed intake; G:F = gain-to-feed ratio.
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in carcass and viscera were also not affected by dietary treat-
ments, but protein in blood increased and then decreased as 
dietary protein levels reduced (quadratic, P < 0.034). Concen-
tration of energy in carcass, blood, and bone-free total body 
increased (quadratic, P = 0.034) or tended (quadratic, P < 0.10) 
to increase and then decreased as dietary protein levels were 
reduced. Retained protein, lipid, and energy were not affected 
by dietary treatment, but energy efficiency for growth tended to 
decrease (linear, P = 0.83; quadratic, P = 0.087) as dietary protein 
levels were reduced. Net energy in diets also tended to decrease 
(linear, P = 0.051) as dietary protein levels were reduced.

Blood characteristics, metabolites in digesta, and 
AA transporters
Plasma urea nitrogen was reduced (linear, P < 0.001) as dietary 
protein levels were reduced, but blood total protein was not 
affected by dietary treatment (Table 5). Albumin in blood 
tended to increase and then decrease (quadratic, P = 0.072) as 
dietary protein levels were reduced, but concentrations of cyto-
kines were not affected by dietary protein levels. Ileal and jeju-
nal morphologies were also not affected by dietary protein 
levels (Table 6). Ammonia concentrations in ileal digesta 
increased and then decreased (quadratic, P = 0.043) and ammo-
nia in colon digesta tended to increase and then decrease (qua-
dratic, P = 0.074) as dietary protein levels were reduced. 
Bacterial protein in colon digesta was reduced (linear, P = 0.030) 
as dietary protein levels were reduced, but mRNA abundance 
of related to AA transporters in the ileal mucosa was not 
affected by dietary protein levels (Table 7).

Discussion
The analyzed crude protein and AA in experimental diets were 
in close agreement with formulated values, which indicates that 
diets were mixed correctly. Likewise, analyzed concentration 
of nutrients in corn and SBM was in agreement with previous 
data (NRC, 2012).

It was expected that on average, all indispensable AA in 
diets, except for Met, would decrease by reducing the inclusion 
of SBM and increasing corn and synthetic AA in diets because 
of the increased digestibility of synthetic AA compared with 

AA in SBM, and this was also observed. However, the analyzed 
Met increased in the diets as SBM was reduced and synthetic 
AA were added, which is likely because synthetic DL-Met was 
added to diets to meet the requirements for both Met and Cys. 
The Lys to crude protein ratio in each diet increased as dietary 
crude protein was reduced, and the ratio ranged between 5.35 
and 8.28% due to the gradual increase of synthetic Lys in diets.

Growth performance, carcass weights, and retained 
nutrients and energy
The lack of differences among treatments in final body weight, 
ADG, ADFI, and G:F is in agreement with results from previ-
ous experiments (Kerr et al., 1995; Le Bellego et al., 2001; 
Wang et al., 2018). The lack of differences in growth perfor-
mance is likely a result of the fact that reduced protein diets 
supplemented with synthetic AA can provide enough AA to 
meet minimum requirements by pigs to maximize growth. 
However, reducing crude protein in corn-SBM diets by more 
than 4% may result in reduced growth performance due to a 
potential AA imbalance (Wang et al., 2018) or because some-
thing other than AA may become limiting to normal growth 
(Boyd et al., 2024). Feeding reduced protein diets may also 
result in increased fat deposition of pigs and reduced protein 
deposition (Ruusunen et al., 2007; Morazán et al., 2015; 
Ruiz-Ascacibar et al., 2017; Boyd et al., 2024).

It has been speculated that there are fewer AA provided in 
excess of requirements in reduced protein diets, which require 
less energy for deamination of AA and excretion of nitrogen. 
Low-protein diets, therefore, may provide more NE, which can 
result in increased fat deposition (Smith et al., 1999). However, 
despite a reduction in dietary protein levels by more than six 
percentage units in this experiment, neither growth perfor-
mance nor carcass weights were affected by treatment. It is, 
therefore, likely that the AA profile in the diets fed in the pres-
ent experiment was closer to meeting the requirements of the 
pigs than in some previous experiments where reduced growth 
performance was observed in pigs fed low-protein diets 
(Ruusunen et al., 2007; Ruiz-Ascacibar et al., 2017). Another 
possibility is that the SBM was not reduced to the extent that 
it limited growth, as observed by Boyd et al. (2024). The cur-
rent data are in agreement with data demonstrating that it is 

Table 3.  Weights of carcass and viscera of growing pigs fed experimental diets.1

Item Dietary crude protein, % P-value2

20.0 16.4 15.4 13.4 SEM Linear Quadratic

Live weight, kg 58.85 59.47 58.47 59.80 1.96 0.542 0.658
Hot carcass weight3, kg 42.50 43.11 43.66 42.34 1.60 0.896 0.305
Dressing percentage, % 72.10 72.42 73.32 72.02 0.63 0.721 0.172
Chilled carcass, kg 42.23 43.41 43.91 41.82 1.71 0.953 0.099
Full viscera4, kg 8.28 8.47 8.29 8.51 0.25 0.514 0.920
Full viscera, % of live weight 14.14 14.28 14.22 13.97 0.35 0.790 0.548
Empty viscera, kg 7.09 6.99 7.00 6.97 0.20 0.562 0.881
Empty viscera, % of live weight 12.08 11.79 11.87 11.70 0.23 0.195 0.883
Digesta-free body weight5, kg 52.32 53.27 53.61 51.54 1.98 0.825 0.171

1Least squares means represent 10 observations per each dietary treatment except that means for dressing percentage and empty viscera of diet containing 
15.4% protein represent 9 observations and that means for dressing percentage and full viscera of diet containing 13.4% protein represent 9 observations.
2P-values for orthogonal polynomial contrast.
3Hot carcass weight does not include leaf fat.
4Full viscera include the combined weights of the liver, gall bladder, heart, kidneys, lungs, spleen, and the stomach, small intestine, and large intestine with 
their contents.
5Calculated as the sum of the weights of chilled carcass, empty viscera, and blood.
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possible to feed reduced protein diets without negatively 
impacting growth performance or carcass characteristics (Kerr 
et al., 1995; Li et al., 2016; Suárez-Belloch et al., 2016).

One concern with formulating low-protein diets is that as 
diet SBM is reduced, the provision of dispensable AA and nitro-
gen to synthesize dispensable AA is also reduced and at some 
point, protein synthesis in pigs fed low-protein diets is reduced 
due to a lack of dispensable AA (Camire et al., 2023). However, 
total analyzed indispensable AA were between 46 and 49% of 
all AA in the four experimental diets, and the concentration of 
indispensable AA, therefore, stayed below 50% of all AA in 
all diets, which has been suggested to be necessary to maintain 
protein synthesis in pigs fed low-protein diets (Lenis et al., 1999). 

It is, therefore, unlikely that any of the diets were limited in 
dispensable AA and the observation that the concentration of 
carcass protein in pigs was not impacted by diet protein level 
supports this conclusion.

The values for hot carcass weight and digesta-free body 
weight in diets with 20.0% or 16.4% crude protein were in 
agreement with data from previous experiments in which 
corn-SBM diets with approximately 20% crude protein were 
fed to growing pigs (Kil et al., 2011; 2013; Stewart et al., 2013). 
The observed values for chilled carcass and the full viscera 
weight also agreed with previous data. However, empty viscera 
weight in kg or as percent of live weight was less in this exper-
iment than previously reported (Stewart et al., 2013), which is 

Table 4.  Analyzed composition of lyophilized carcass, retention of energy, protein, and lipids in pigs from the initial slaughter group (ISG) and pigs fed 
experimental diets, and net energy (as-fed basis) in experimental diets1,2

Item Dietary crude protein, % P-value3

ISG 20.0 16.4 15.4 13.4 SEM Linear Quadratic

Carcass4

  Weight, kg 8.82 21.60 21.91 20.99 20.33 1.14 0.163 0.261
  Protein, g/kg 558 481 457 496 486 13 0.670 0.401
  Lipids, g/kg 365 479 474 419 463 24 0.378 0.483
  Energy, Mcal/kg 6.65 7.15 7.22 7.30 7.02 0.1 0.640 0.096
Viscera5

  Weight, kg 0.68 1.58 1.63 1.61 1.63 0.06 0.438 0.784
  Protein, g/kg 696 626 632 598 609 19 0.357 0.866
  Lipids, g/kg 194 237 245 244 250 13 0.482 0.976
  Energy, Mcal/kg 5.52 5.60 5.76 5.72 5.70 0.08 0.346 0.311
Blood
  Weight, kg 0.25 0.53 0.50 0.46 0.49 0.03 0.120 0.544
  Protein, g/kg 994 1,006 1,022 1,025 1,009 7 0.454 0.034
  Lipids, g/kg 10 21 14 14 12 2 0.005 0.645
  Energy, Mcal/kg 5.41 5.26 5.58 5.41 5.26 0.11 0.837 0.025
Total body6

  Weight, kg 9.74 23.71 24.04 23.07 22.45 1.19 0.167 0.270
  Protein, g/kg 579 503 481 514 506 13 0.747 0.399
  Lipids, g/kg 344 452 449 399 438 22 0.391 0.513
  Energy, Mcal/kg 6.54 7.00 7.09 7.15 6.89 0.10 0.664 0.069
  Retained protein7, g/d – 223 210 221 201 19 0.285 0.725
  Retained lipid7, g/d – 265 266 234 236 30 0.213 0.751
  Retained lipid: protein – 1.06 1.09 0.94 1.01 0.07 0.491 0.976
  Retained energy7, Mcal/d – 3.66 3.82 3.52 3.25 0.33 0.135 0.120
  Energy intake8, Mcal/d – 8.41 8.68 8.42 8.85 0.29 0.184 0.609
  Energy efficiency for growth8, % – 42.79 43.86 41.68 36.40 3.03 0.083 0.087
NE in diets
  NE from retained protein9, kcal/d – 1,263 1,187 1,250 1,138 107 0.285 0.725
  NE from retained lipids9, kcal/d – 2,510 2,521 2,214 2,234 281 0.213 0.751
  NE for growth10, kcal/d – 3,774 3,708 3,464 3,372 357 0.124 0.671
  NE for maintenance11, kcal/d – 1,795 1,788 1,787 1,800 40 0.883 0.411
  NE in diets12, kcal/kg – 2,605 2,488 2,436 2,305 134 0.051 0.667

1Least squares means represent 10 observations per dietary treatment.
2Concentrations of protein, lipid, and energy represent analyzed nitrogen × 6.25, acid-hydrolyzed ether extract, and gross energy in each body part, 
respectively.
3P-values for orthogonal polynomial contrast.
4Carcass includes skin, lean tissue, and fat tissue, excluding all bones.
5Viscera include the liver, heart, kidneys, lungs, spleen, and the empty stomach, small intestine, and large intestine.
6Total body includes bone-free carcass, viscera, and blood.
7Retained nutrients and energy in the body were calculated using the difference in body composition between ISG (n = 16) and body composition of pigs fed 
experimental diets for 28 d.
8Energy intake was calculated as multiplying average daily feed intake of pigs by analyzed gross energy in each respective diets; energy efficiency for growth 
was calculated dividing retained energy by the energy intake and multiplying it by 100.
9NE in protein and lipids was calculated by multiplying retained protein and lipids by 5.66 and 9.46 kcal/g, respectively (Ewan, 2001).
10NE for growth was calculated as the sum of NE from retained protein and lipids.
11Daily NE for maintenance was calculated by multiplying the mean metabolic body weight (kg0.60) by 179 kcal (Noblet et al., 1994).
12NE in diets was calculated by dividing the sum of NE for growth and NE for maintenance by daily feed intake.
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likely because diets high in fiber were used by Stewart et al. 
(2013), and dietary fiber will increase intestinal mass (Henry, 
1985; Pond et al., 1988).

The observed values for total protein, lipids, and energy in 
carcass, viscera, and blood were slightly greater than values 
reported with a 20% crude protein diet (Stewart et al., 2013). 
Retained protein, lipid, and energy were in agreement with 
previous data (Ruiz-Ascacibar et al., 2017). Compared with 

results of other experiments (Kil et al., 2011; 2013), retained 
protein and lipid were greater, but the lipid:protein ratio 
aligned closely. The lack of differences in retained protein and 
lipid among pigs fed experimental diets contrasts with results 
indicating a reduced protein retention and increased lipid reten-
tion in pigs fed low-protein diets compared with pigs fed diets 
with greater protein concentration (Ruiz-Ascacibar et al., 2017; 
Boyd et al., 2024). Results from the present experiment were 
also different from data indicating that energy retention is 
increased in pigs fed low-protein diets (Le Bellego et al., 2001; 
Noblet et al., 2001), but it is not clear if this is because of 
differences in diet composition or a difference in the genetic 
ability of pigs to retain energy.

The observed NE values in diets were on average greater than 
values determined in corn-SBM diets (Kil et al., 2011, 2013), 
but that is likely because more soybean oil was included in the 
diets fed in this experiment than in previous experiments. The 
observed NE in the current experiment was close to the deter-
mined NE in corn-SBM diets with a similar soybean oil inclu-
sion (Stewart et al., 2013). It was expected that NE would 
increase as dietary crude protein decreased because the NE in 
SBM is believed to be less than in corn (Sauvant et al., 2004; 
NRC, 2012). Therefore, reducing SBM and increasing corn 

Table 5.  Concentrations of plasma urea nitrogen, total protein, albumin, and cytokines in plasma of pigs fed experimental diets1

Item Dietary crude protein, % P-value2

20.0 16.4 15.4 13.4 SEM Linear Quadratic

Plasma urea nitro-
gen, mg/dL

16.10 10.30 8.10 5.00 0.93 <0.001 0.886

Total protein, g/dL 5.59 5.88 5.67 5.64 0.12 0.742 0.175
Albumin, g/dL 3.70 3.86 3.84 3.66 0.10 0.999 0.072
Cytokines3, pg/mL
  IL-1β 33.22 13.87 18.75 20.77 7.70 0.197 0.211
  IL-4 0.23 0.22 0.22 0.22 0.00 0.142 0.347
  IL-10 0.09 0.09 0.09 0.09 0.00 0.996 0.236
  TNF-α 118.14 92.87 105.26 96.58 11.20 0.182 0.539

1Least squares means represent 10 observations per each dietary treatment except that means for IL-1β of diet containing 20.0% protein represent 9 
observations and that means for IL-1β and TNF-α of diet containing 16.4% protein represent 9 observations.
2P-values for orthogonal polynomial contrast.
3IL, interleukin; TNF, tumor necrosis factor alpha.

Table 6.  Morphology of jejunal and ileal tissues, ammonia concentrations in ileal and colon digesta, and bacteria in colon digesta of pigs fed experimen-
tal diets1

Item Dietary crude protein, % P-value2

20.0 16.4 15.4 13.4 SEM Linear Quadratic

Jejunal morphology
  Villi height, μm 496.45 514.81 510.86 502.58 16.60 0.715 0.450
  Crypt depth, μm 275.46 290.24 271.93 289.37 12.15 0.525 0.931
  Villi height to crypt depth 1.83 1.79 1.90 1.75 0.07 0.631 0.426
Ileal morphology
  Villi height, μm 511.06 488.14 477.42 495.06 15.84 0.324 0.287
  Crypt depth, μm 259.51 246.24 259.30 251.83 12.79 0.704 0.781
  Villi height to crypt depth 2.02 2.02 1.87 1.97 0.08 0.401 0.673
Ammonia in ileum, mg/g 0.52 0.84 0.78 0.60 0.12 0.421 0.043
Ammonia in colon, mg/g 2.14 2.32 2.49 2.15 0.13 0.559 0.074
Bacteria protein in colon, µg/g 963.14 817.07 868.43 710.05 74.30 0.030 0.700

1Least squares means represent 10 observations per each dietary treatment except that means for ileal morphology of pigs fed diet containing 15.4% protein 
represent 9 observations and that means for jejunal morphology of pigs fed diet containing 13.4% protein represent 9 observations.
2P-values for orthogonal polynomial contrast.

Table 7.  Relative mRNA abundance of genes for amino acid transporters 
in the ileal mucosa of pigs fed experimental diets.1,2

Item3 Dietary crude protein, % P-value4

20.0 16.4 15.4 13.4 SEM Linear Quadratic

SLC3A2 1.85 1.10 2.19 1.41 1.29 0.629 0.762
SLC6A14 2.02 2.11 1.26 1.30 1.46 0.269 0.759
SLC6A19 0.62 0.58 0.54 0.94 1.35 0.454 0.265

1Data are least squares means of 6 observations per treatment.
2Least squares means and SEM were log2-backtransformed after the 
statistical analysis.
3SLC3A2, solute carrier family 3 member 2; SLC6A14, solute carrier 
family 6 member 14; and SLC6A19, solute carrier family 6 member 19.
4P-values for orthogonal polynomial contrast.
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should have increased dietary NE. If reducing SBM increases 
dietary NE, then G:F should have been improved as well. How-
ever, the observation that no increase of NE in diets or improved 
G:F was observed as crude protein was reduced in diets indi-
cates that NE in SBM is close to or greater than the NE of corn. 
In fact, the tendency for a reduction in NE as SBM in diets was 
reduced indicates that NE in SBM may be greater than in corn, 
which has also been reported in other experiments in which the 
energy value of SBM was estimated from growth performance 
of pigs (Cemin et al., 2020; Boyd et al., 2023; Ibagon et al., 
2025). It is recognized that estimating the energy value of a feed 
ingredient or diet from growth performance does not take pos-
sible changes in body composition into account and such values 
should, therefore, not be called NE values (Zhang et al., 2020; 
Ibagon et al., 2025). To overcome the limitations of estimating 
diet energy values from growth performance of pigs, the com-
parative slaughter procedure was used in the present experi-
ment. This procedure allows for taking differences in body 
composition into account and should, therefore, provide more 
reliable values than using growth performance data. However, 
the fact that results of the present experiment were in agreement 
with some recent values estimated from growth performance 
of pigs, indicates that NE of SBM indeed is greater than previ-
ously believed. Likewise, in recent experiments in which NE in 
SBM was determined using indirect calorimetry, the NE in SBM 
was between 87 and 100% of the NE in corn (Li et al., 2017; 
Cristobal et al., 2024) further indicating that current book val-
ues (Sauvant et al., 2004; NRC, 2012) may underestimate the 
NE in SBM. Results of this experiment, therefore, are in agree-
ment with results of other recently conducted experiments.

Blood parameters, intestinal morphology, digesta 
analysis, and mRNA abundance of intestinal AA 
transporters
Observed values for plasma urea nitrogen were within the 
range of values determined in previous experiments (Kerr and 
Easter, 1995; Che et al., 2017), and the observed decrease in 
plasma urea nitrogen as crude protein in diets was reduced, is 
consistent with other experiments (Kerr and Easter, 1995; Che 
et al., 2017; Wang et al., 2018; Limbach et al., 2021). Plasma 
urea nitrogen is generated during AA metabolism and reflects 
the amount of excess nitrogen that pigs are consuming (Wang 
et al., 2018). In pigs fed high-protein diets, some AA are fed in 
excess of the requirement, and these AA are deaminated, pro-
ducing ammonia that is then converted to urea prior to excre-
tion, which increases plasma urea nitrogen. Pigs fed diets with 
reduced protein are expected to have less excess AA, and there-
fore, less deamination, less ammonia production, and less urea 
synthesis, which reduces plasma urea nitrogen. Thus, the 
observed reduction in plasma urea nitrogen in pigs fed diets 
with reduced crude protein was expected.

The observed values for total protein and albumin in blood 
agreed with values obtained by Che et al. (2017). The lack of 
differences in total protein and albumin in blood indicates that 
the provision of limiting indispensable AA was close to the 
requirements regardless of the diet being fed. Albumin synthesis 
relies on indispensable AA, and stable levels of albumin in 
blood indicate that sufficient AA were available for protein 
synthesis. Maintaining constant levels of total protein in blood, 
along with the observed reduction in blood urea nitrogen, also 
supports that diets supported efficient nitrogen utilization.

The observed lack of effects on pro-inflammatory (IL-1β and 
TNF-α) or anti-inflammatory (IL-10 and IL-4) cytokine levels 
indicates that reducing dietary crude protein does not confer 
immune advantages compared with high-protein diets in 
healthy non-disease-challenged pigs. This observation contrasts 
data indicating that low-protein diets reduced post-weaning 
diarrhea in newly weaned pigs, potentially due to improved 
intestinal health (Limbach et al., 2021). However, results from 
the present experiment indicate that reducing protein in diets 
may not necessarily modulate systemic immune responses as 
measured by cytokine levels in older pigs. The observed lack 
of treatment effects on villi height or crypt depth in ileal and 
jejunal morphology also supports this conclusion.

Reducing dietary crude protein intake decreases substrate 
availability for bacterial fermentation in the hindgut (colon), 
potentially lowering ammonia production, although 
low-protein diets do not always result in significant changes in 
intestinal ammonia levels (Tao et al., 2021). This may be due 
to compensatory mechanisms in nitrogen metabolism or vari-
ations in gut microbiota composition (Liu and Fan, 2022). 
Reducing dietary protein levels may result in a decrease in 
bacteria that thrive on undigested protein (Liu and Fan, 2022), 
which may reduce bacterial protein content in the colon, which 
was also observed in the present experiment. It is, however, 
acknowledged that the data presented for intestinal ammonia 
and bacterial protein are based on the concentration in intes-
tinal contents. If dietary treatments affected total fecal mass, 
concentrations in intestinal contents would not necessarily 
represent daily synthesis.

It was hypothesized that a reduction in dietary protein levels 
may result in adaptive responses for AA transporters, which 
may increase the mRNA abundance of AA transporters to 
increase the uptake of more free AA (Morales et al., 2015; Li 
et al., 2024). The observed lack of effects of dietary treatments 
on SLC6A14 differs from results of a previous experiment indi-
cating that the mRNA abundance of this gene was reduced in 
pigs fed diets containing 14% crude protein compared with 
pigs fed a 20% crude protein diet (Wang et al., 2017). However, 
the lack of differences observed for SLC3A2 does agree with 
the previous experiment (Wang et al., 2017). The overall lack 
of effects from dietary treatments on the mRNA abundance of 
AA transporters indicates that these specific transporters are 
not sensitive to dietary protein levels. This observation agrees 
with data demonstrating that the mRNA abundance of AA 
transporters is not impacted by diet crude protein level (Morales 
et al., 2015).

Conclusions
The hypothesis that reducing dietary protein levels by reducing 
dietary SBM and increasing corn and synthetic AA would not 
increase dietary NE was confirmed as results demonstrated that 
there was a tendency for a reduction in NE as crude protein 
was reduced. Likewise, the hypothesis that reducing diet crude 
protein would not impact growth performance or carcass com-
position of pigs was confirmed. Intestinal morphology, blood 
cytokine concentrations, and mRNA abundance of AA trans-
porters were also not impacted by dietary treatments, which 
was also in agreement with the hypothesis. Overall, these 
results indicate no advantage on any of the measured responses 
of reducing diet SBM concentrations, but the observation that 
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the NE in SBM is likely greater than current book values 
deserves further investigation.
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