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ABSTRACT: Three experiments were conducted to determine protein quality and to evaluate 

digestible indispensable amino acid scoring (DIAAS) methodology. Experiment 1 was 

conducted to compare protein digestibility corrected amino acid scores (PDCAAS) and DIAAS 

for various plant and animal proteins. Values for standardized total tract digestibility (STTD) of 

crude protein (CP) and standardized ileal digestibility (SID) of amino acids were calculated for 

whey protein isolate (WPI), whey protein concentrate (WPC), milk protein concentrate (MPC), 

skim milk powder (SMP), pea protein concentrate (PPC), soy protein isolate (SPI), soy flour, and 

whole grain wheat. The PDCAAS-like values were calculated using the STTD of CP to estimate 

amino acid digestibility and values for DIAAS were calculated from values for SID of amino 

acids. Results indicated that values for SID of most indispensable amino acids in WPI, WPC, and 

MPC were greater (P < 0.05) than for SMP, PPC, SPI, soy flour, and wheat. If the same scoring 

pattern for children between 6 and 36 months was used to calculate PDCAAS-like values and 

DIAAS, PDCAAS-like values were greater (P < 0.05) than DIAAS values for SMP, PPC, SPI, 

soy flour, and wheat indicating that PDCAAS-like values estimated in pigs may overestimate the 

quality of these proteins. Experiment 2 was conducted to determine the DIAAS values for pork 

loin and to evaluate the effect of roasting, frying, or grilling of pork loin on protein quality. The 

DIAAS were calculated based on ileal digestibility of amino acids in pigs for raw pork loin, 

roasted pork loin, grilled pork loin, fried pork loin, and casein. Six ileal-cannulated barrows were 

allotted to a 6 × 6 Latin square design with 6 diets and 6 periods during which ileal effluent 

samples were collected to determine amino acid digestibility. A N-free diet was formulated to 

determine basal endogenous losses of amino acids and crude protein (CP) and to enable the 

calculation of standardized ileal digestibility (SID) of amino acids. The remaining diets were 

formulated with each test ingredient as the sole source of amino acids. Using determined values 
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for SID of amino acids for each ingredient and established reference protein patterns, DIAAS 

were calculated. For children from birth to 6 m, fried pork loin had the greatest (P < 0.05) 

DIAAS followed by grilled pork loin, roasted pork loin, raw pork loin, and casein. For children 

from 6 m to 3 y, DIAAS were greatest (P < 0.05) for grilled and fried pork loin and least (P < 

0.05) for raw pork loin and the DIAAS of roasted pork loin was greater (P < 0.05) than that of 

casein. For DIAAS calculated for children older than 3 y, there were no differences in the 

DIAAS among grilled pork loin, fried pork loin, and casein, but these 3 ingredients had greater 

(P < 0.05) DIAAS than roasted pork loin, which in turn had a greater (P < 0.05) DIAAS than 

raw pork loin. Results indicate that prepared pork loins can be considered excellent protein 

sources based on their DIAAS and these data make it possible to calculate DIAAS for meals 

containing commonly consumed pork loin products. Additionally, results of this research 

indicate that even for high-quality proteins, such as pork loin, correct preparation can improve 

DIAAS. Experiment 3 was conducted to determine DIAAS values for 10 different foods known 

to have different protein values: wheat bread, whey protein isolate, zein, sorghum flour, bovine 

collagen, black beans, pigeon peas, chick peas, roasted peanuts, and Kellogg’s® All-Bran®. The 

second objective was to determine the variability among replications in the determination of the 

DIAAS values. Thirteen ileal-cannulated gilts were assigned to an incomplete 13 × 6 Latin 

square design with 13 diets and 6 periods. The 10 ingredients were used to formulate 10 different 

diets where each ingredient was the sole source of amino acids in the diet. Pigs on treatments 1 

to 10 were fed the 10 diets containing the 10 food sources. Pigs on treatments 11, 12, and 13 

were fed the whey protein isolate diet, the sorghum diet, and the pigeon pea diet, respectively. 

These extra replications enabled determination of intra-experiment variability. The SID for total 

amino acids was greater (P < 0.05) in toasted wheat bread and sorghum flour than in all other 
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proteins except for chickpeas. The SID for mean indispensable amino acids, mean dispensable 

amino acids and total amino acids was lower (P < 0.05) in All-Bran® than in all other proteins 

except roasted peanuts. The DIAAS was 0 for zein, bovine collagen, roasted peanuts, and All-

Bran® for all reference ratios. Whey protein isolate had the greatest (P < 0.05) DIAAS for 

infants, followed by chickpeas, pigeon peas, sorghum flour, black beans, and toasted wheat 

bread, in descending order. Whey protein isolate had the greatest (P < 0.05) DIAAS for children 

(6 m to 3 y) followed by chick peas and pigeon peas. Black beans and sorghum flour had DIAAS 

values that were not different, but these values were greater (P < 0.05) than the DIAAS for 

toasted wheat bread. Whey protein isolate had the greatest (P < 0.05) DIAAS for older children 

(3 y and older), followed by chickpeas. Pigeon peas had a greater (P < 0.05) DIAAS than 

sorghum flour, which in turn had a greater (P < 0.05) DIAAS than black beans, and black beans 

had a greater (P < 0.05) DIAAS than toasted wheat bread. For DIAAS calculated for all 3 

reference ratios, there were no differences between replications for whey protein isolate, 

sorghum, or pigeon peas. The DIAAS values determined in this experiment indicate that most 

legumes and cereal grain products tested in this experiment are not adequate as the sole sources 

of protein for humans. Results of this experiment demonstrate that the pig model is a consistent 

model for determination of amino acid digestibility and DIAAS determination even when 

disparate protein sources are used. 

Key words: protein quality, DIAAS, PDCAAS, amino acids, digestibility, pigs 
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CHAPTER 1: INTRODUCTION 

 Evaluation of protein as a nutrient began centuries ago (Munro, 1964). Nonetheless, 

characterization proteins in terms of their nutritive value and the optimization of their use in diets 

is still a highly debated topic (FAO, 1991). Proteins have been understood as compositions of 

individual amino acids for over a hundred years, and these individual amino acids have been 

recognized as distinct nutrients for nearly as long. In modern animal agriculture, most animals 

are fed on an amino acid basis (Fuller et al., 1989), with some system even accounting for the 

digestibility of individual amino acids (NRC, 2012). Despite this knowledge, in the field of 

human nutrition, most diets are still formulated based on protein. 

 Not all proteins are equal. Every protein has a specific composition of amino acids and 

not all amino acids in a food are bioavailable. As a result, formulation of diets on a protein basis 

is both imprecise and inaccurate. Accordingly, as understanding of protein in the diet has 

evolved, so too has its evaluation. A protein’s value as a source of indispensable amino acids in 

the diet, its “protein quality”, has become the primary focus (FAO 1991; 2013). The current gold 

standard for protein quality evaluation, protein digestibility corrected amino acid scoring 

(PDCAAS) has recently been challenged by a new system called digestible indispensable amino 

acid scoring (DIAAS; FAO; 2013). 

 There are several advantages to the DIAAS methodology over PDCAAS (many of which 

are discussed in later chapters), and as such the FAO has endorsed it as the successor to 

PDCAAS (FAO, 2013). However, substantial work is required before DIAAS can replace the 

PDCAAS, which has been the premier method for protein quality evaluation for over 25 years. 

As a result, there is a substantial database of PDCAAS values available. Additionally, years of 

use have proven that the PDCAAS system is both robust and effective. Therefore, the DIAAS 
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system must also undergo rigorous evaluation. Before DIAAS can be used in place of PDCAAS, 

a database of DIAAS values is needed so that DIAAS can be used for diet formulation. In 

addition, DIAAS determination needs to be proven consistent and repeatable.  

 Accurate evaluation of protein quality is of great value to nutritionists, but the true value 

lies in its use to address global malnutrition. It is estimated that as of 2016 there were 815 

million people around the world suffering from malnutrition; this value is an increase from 2015 

(FAO, 2017). Protein-energy malnutrition specifically is a significant concern. In developing 

countries, protein-energy malnutrition is estimated to account for over 56% of child deaths 

(Semba, 2016). In already marginalized populations, meeting amino acid requirements can be a 

matter of life or death. With this in mind, it is clear that improvements in protein quality 

evaluation is a matter of some urgency, and for these reasons, the DIAAS system needs to be 

adopted, implemented, and validated as soon as possible.  
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CHAPTER 2: EVALUATION OF THE NUTRITIONAL QUALITY OF PROTEINS: A 

REVIEW OF LITERATURE  

 

INTRODUCTION 

 Protein was first described as a nebulous substance present in large concentration in 

animal tissues and in smaller concentrations in plant tissue in the mid-eighteenth century 

(Munro, 1985). However, it was not until 1772 that elemental N was isolated by Rutherford and 

1816 that François Magendie demonstrated empirically the essentiality of N for life in dogs 

(Munro, 1964; 1985). Since their discovery, proteins have always been identified by their N 

content. Indeed, the term “protein” was coined by Dutch chemist Gerardus Mulder at the 

suggestion of Jac Berzelius in 1838 to represent the organic nitrogenous nuclei inherent to all 

nitrogenous compounds (Munro, 1985; Carpenter, 1994; Pencharz, 2012; Stipanuk, 2013). 

Despite Mulder’s theories regarding the fundamental structure of all nitrogenous compounds 

being proven flawed, the term “protein” is still in use today (Munro, 1985), although it is used in 

a somewhat different sense.  

A more contemporary definition for protein is as follows: “high molecular weight 

polyamides, consisting of one or more chains of amino acids, which fold into a form that 

gives…particular function” (Eastwood, 2003). Nearly 200 years after Mulder’s original work, N 

remains central to the identity of protein. However, as research has progressed, the definition for 

protein has evolved to describe not only the structure of proteins, but also to include their 

inherent functionality, which is defined by both the amino acids composition of protein and the 

configuration (Eastwood, 2003; Pencharz, 2012). However, understanding the inherent nature of 

proteins to be dependent on intrinsic peptides and, therefore, amino acids was an advance that 
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took several decades. Although amino acids were known as hydrolytic components of protein as 

early as 1820 (Munro, 1964), the elucidation of a protein structure to consist of polypeptides that 

were in turn composed of amino acids was primarily the result of the separate, but related, work 

of 3 chemists near the turn of the 19th century: Emil Fischer, Albrecht Kossel, and Franz 

Hofmeister (Fruton, 1979). It was, however, Fischer who was the first to use the term “peptide” 

and “polypeptide”, but it took several decades before the polypeptide hypothesis was fully 

accepted (Fruton, 1979). 

 Alongside advances in protein chemistry, and despite relative uncertainty regarding the 

ultimate chemical composition of proteins, research regarding the nutritional utilization of N 

continued. Nitrogen balance studies were conducted in dairy cattle as early as in 1839 by Jean-

Baptiste Boussingault, and some of the first protein requirements were proposed by Lyon 

Playfair in 1865 (Munro, 1964; 1985). These requirements were based on Justus von Liebig’s 

false assumption that protein was broken down to fuel work, and thus needed to be replenished 

(Munro, 1985). Despite his discredited assumptions regarding protein metabolism, Liebig was 

one of the first to acknowledge functional differences in the quality of proteins with his critique 

of gelatin in the early 1840’s (Munro, 1964; 1985).  

Gelatin continued to be used in protein research, and Kauffman conducted a N balance 

study on himself in 1905 and determined that he could maintain N balance if he consumed 

gelatin supplemented with Tyr, Cys, and Trp; this was, however, in direct contradiction to 

similar contemporary experiments conducted by Rona and Müller (Munro, 1964). Just one year 

later, however, Willcock and Hopkins were able to improve longevity and welfare of mice fed 

zein (a purified corn protein) with the supplementation of Trp, and in 1914, Osborne and Mendel 

determined that further addition of Lys to this mixture created a wholly adequate diet for mice 
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(Munro, 1964). It was this work that set the stage for a student of Mendel, William C. Rose, to 

begin to create diets in which protein could be replaced entirely by amino acids and to ultimately 

discover the final proteinogenic amino acid, Thr (McCoy et al., 1935; Munro, 1964). With the 

discovery of Thr, it became possible to formulate diets using only purified amino acids, and thus 

began an era of great progress in the understanding of individual amino acid requirements. The 

understanding of the relative value of a protein naturally resulted in the need for a more specific 

understanding of its component amino acids. In fact, just over a decade after the discovery of 

Thr, the first system for evaluation of proteins based on their amino acid composition was 

developed by Block and Mitchell (1946) who used a “chemical score” that was calculated using 

egg protein as the standard. The scoring of a protein and the use of egg as the standard 

highlighted the functional value of protein as a nutrient. Despite the existence of hundreds of 

amino acids in nature, only 20 amino acids can be coded for transcription by mRNA (Eastwood, 

2003; Pencharz, 2012). This does not, however, imply that only 20 amino acids are found in 

body proteins, but simply that only these 20 amino acids can be transcribed; other required 

amino acids can be synthesized in-protein via post-translational modifications (Stipanuk, 2013). 

Because these 20 amino acids are the amino acids needed for the synthesis of all body prions, 

they are the only amino acids of major dietary concern in humans.  

 In a normal human diet, purified amino acids are rarely directly consumed. Typically, 

amino acids are provided in the diet as components of proteins. Whole proteins are subject to 

digestion whereupon they are hydrolyzed into smaller peptides, which may subsequently be 

further broken down into free amino acids that can enter the blood stream (Moughan and 

Stevens, 2013). The body is able to utilize these amino acids in various metabolic processes and, 

most notably, in protein synthesis.  
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Because amino acids are absorbed from the diet, as opposed to whole proteins, and 

because amino acids are the foundation of protein metabolism, the distinction between amino 

acids and protein is important. As the foundation of protein metabolism, i.e. synthesis and 

degradation, amino acids need to be treated as distinct nutrients, each with their individual 

requirement (FAO, 2013). Indeed, from a nutritional perspective the value of a protein in the diet 

is directly related to its amino acid composition (NRC, 2012). Consequently, there is no 

requirement for protein per se and protein intake may not always adequately reflect amino acid 

intake. 

PROTEIN DEFICIENCY 

Millions of children across the world depend on staple foods that are poor sources of 

indispensable amino acids (Semba, 2016a) and low serum concentrations of essential amino 

acids have been associated with stunting in children (Semba et al., 2016b). Protein-energy 

malnutrition has been calculated to account for approximately 56% of child deaths in developing 

countries (Pelletier et al., 1993; Semba, 2016a). However, protein-energy malnutrition is not 

limited to children in developing countries. Elderly individuals in developing countries are 

subject to high rates of protein malnutrition (Volkert and Sieber, 2011; Donini et al., 2013). 

Additionally, recent evidence indicates that the protein requirement for elderly individuals may 

currently be underestimated (Volkert and Sieber, 2011; Donini et al., 2013). It is for these 

reasons that the FAO sees this “as a matter of urgency”. The potential complications from amino 

acid deficiency on health and welfare are serious, lasting, and can include death. 

Protein deficiency is a worldwide phenomenon that has been researched extensively. 

However, malnutrition in the global sense is nearly always a multi-factorial issue. Therefore, 

isolating the precise numbers of individuals who suffer from protein malnutrition is complicated. 
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Despite progress in determining protein quality and malnutrition the incidence of malnutrition 

has been increasing (FAO, 2017). Though most of this increase is assumed to be caused by 

geopolitical conflicts, it is estimated that as of 2016 there were 815 million people around the 

world suffering from malnutrition (FAO, 2017). 

In general, there are 3 main indicators of undernutrition: wasting (low weight for height), 

stunting (low height for age), and being underweight (low weight for age; Onís et al., 1993). 

These indicators are associated with protein-energy malnutrition (PEM) and more than one-third 

of the world’s children suffer from PEM (Onís et al., 1993). Despite the lifelong requirement for 

amino acids in humans, protein deficiency is perhaps best characterized by its effects on infants 

and growing children due to the relatively higher amino acid requirements if expressed as 

concentration of diet. As a result, one of the earliest described and primary protein deficiency 

syndromes described throughout history is one that is nearly exclusive to children: 

“kwashiorkor” (Carpenter, 1994c). 

Kwashiorkor was first official identified in Cicely Williams’ publication in the Archives 

of Disease in Childhood (1933) after her first-hand experience with the disease in West Africa. 

The disease was limited to children of typically 1 to 2 y of age and presented itself with 

symptoms that included generalized edema, irritability, swollen abdomens, diarrhea, and flaky 

skin (Williams, 1933). Without treatment, the disorder was invariably fatal. Although Williams 

was correct in assuming the disease was related to the diet, it was not immediately clear at the 

time that kwashiorkor was caused by protein deficiency. In fact, the title of the article (A 

Nutritional Disease of Childhood Associated with a Maize Diet) clearly indicates her 

understanding of the nutritional etiology of the disease. However, when the evidence is viewed 

through modern eyes, the relationship becomes clearer. The name kwashiorkor was given to the 
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disease by the locals, which translates to “the deposed child” in English (Carpenter, 1994c). The 

name referred to the fact that most cases of kwashiorkor occurred in children once their mother 

had begun nursing another, younger child. Kwashiorkor progressed despite the fact that the 

children often began consuming solid foods, primarily grains and tubers like corn and cassava 

(Williams, 1933). These foods although high in energy, are low in amino acids. Combined with 

the lack of breast milk, children consuming these diets were severely lacking in indispensable 

amino acids. 

Although identified nearly 100 years ago, kwashiorkor, or as it is now known, 

oedematous malnutrition, is still commonplace throughout the developing world (Manary et al., 

2009). This is made all the more tragic in consideration of the fact that the cause of the disease is 

now well understood, highlighting the importance of using knowledge about protein quality in 

diet formulations. 

HISTORICAL INTERPRETATIONS OF PROTEIN QUALITY 

The concept of amino acids as individual nutrients was understood through the combined, 

but largely separate, work of Rose and Mitchell at the University of Illinois (Carpenter, 1994b). 

Most conventional feeding programs for pigs and poultry have been based on individual amino 

acids for over 40 years (Fuller et al., 1989), but this concept has not been utilized in the field of 

human nutrition. However, the importance of proteins in human nutrition has been recognized 

for at least 100 years and there have been a number of measures for protein quality used during 

the last century. 

Protein Efficiency Ratio (PER) 

One of the first methodologies for comparing proteins on a quantitative basis was 

developed approximately 100 years ago (Osborne et al., 1919; Carpenter, 1994d). Although, not 
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explicitly called the “Protein Efficiency Ratio” (PER) in their original publication, the basis for 

PER determination was established (Osborne et al., 1919). It was understood that growth was 

directly related to intake of protein, and it was accepted that by limiting the concentration of 

protein in food, growth was limited, which established the basis for evaluating proteins based on 

PER. By feeding rats a defined amount of a protein over a fixed amount of time, usually 4 

weeks, and then evaluating weight gain relative to protein intake, the PER could be calculated 

(Friedman, 1996). For standardization purposes, adjusted PER could be determined if a control 

group of rats was fed a casein diet. A multiplier was used for both casein and the test protein to 

ensure that casein yielded a PER of 2.5, under the assumption that this adjustment would inhibit 

variation among rats from different colonies (Carpenter, 1994d). Though the official procedure 

for calculating PER required refinement over the following decades, particularly, by establishing 

a constant level of protein as approximately 10% of dry weight of the diet (Carpenter, 1994d; 

Gilani and Lee, 2003). However, PER was accepted as an official method for evaluating protein 

quality in the United States of America in 1965 (AOAC, 1965). As of 2018, PER is still the 

official methodology recommended for evaluation of protein quality by Health Canada (Health 

Canada, 1981). 

The importance of the PER methodology to protein nutrition is difficult to overstate. It 

was a pioneering effort that enabled the evaluation of proteins on an objective, quantitative basis 

that strictly reflected the value of protein as a nutrient. Additionally, by using growth as a metric, 

calculation of PER offered insight into the value of proteins before the discovery of all 

indispensable amino acids and their specific requirements. However, because of the inability of 

PER to separate the protein requirement for growth and maintenance, PER falls short (Gilani and 

Lee, 2003). This is of concern because it prevents the proportionality of ratios from being 
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directly reflective of their comparative values (Gilani and Lee, 2003). The PER methodology 

also fails to account for the composition of the tissue in weight gained by the rat (Carpenter, 

1994d). Additionally, although PER may be of great value to the formulation of murine diets, 

application of PER to human diets is more complex. Being based on the growth of the weanling 

rat, PER reflects a protein’s ability to meet the requirements of the rat, not the human, and the 

differences in the requirements between rats and humans are not taken into account in the PER 

calculation. 

In an attempt to account for the maintenance requirement, modifications to the PER 

protocol were made by creating the Net Protein Ratio (NPR). The NPR differs from PER in two 

primary ways. To make some estimation of the maintenance requirement, a control group of rats 

is fed a protein-free diet and the weight loss of these rats is then subtracted from the weight gain 

of rats on the protein treatment (Friedman, 1996; Gilani and Lee, 2003). Although this estimation 

is advantageous, it makes the assumption that the protein required to prevent weight loss is 

equivalent to the protein required for maintenance (Gilani and Lee, 2003). A second change that 

NPR methodology adds is that the experimental period is reduced from 4 weeks to 2 weeks 

(Gilani and Lee, 2003). In a further attempt to address shortcomings, Relative Net Protein Ratios 

(RNPR) were developed. To calculate RNPR, the NPR of a protein was divided by the NPR of a 

reference protein and expressed as a proportion of 100 (Gilani and Lee, 2003). This adaptation 

allowed for values to have increased precision compared with PER values and created values that 

were proportional to each other (Gilani and Lee, 2003). 

Biological Value of Protein (BV) and Net Protein Utilization (NPU) 

Rather than the use of growth as a metric for protein quality, other systems used N 

balance. The concept of BV was first explored in humans by Karl Thomas who described it as 
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the amount of N that was retained, i.e. not excreted in urine, from the consumption of a food 

protein assuming the diet met energy requirements (Carpenter, 1994d). However, the technique 

was more rigorously explored in rats by H. H. Mitchell at the University of Illinois who also fed 

N-free diets to enable determination of endogenous losses (Carpenter, 1994d). Using these 

values, Mitchell calculated BV using the following equation: 

BV (%) = [{[Ni – (Nf + Nu)] - [Nif – (Nff + Nuf)]} / [Ni – (Nf – Nff)]] × 100,    

where BV is the biological value of the protein in the diet (%), Ni is the intake of N on the 

proteinaceous diet, and Nf is the fecal output of N on the proteinaceous diet, Nu is the urine 

output of N on the proteinaceous diet, Nif is the intake of N on the N-free diet, and Nff is the 

fecal output of N on the N-free diet, and Nuf is the urine output of N on the N-free diet 

(Carpenter, 1994d; Friedman, 1996).  

 In a further attempt to modify BV to reflect not only absorption of N, but to also reflect N 

utilization, NPU was proposed, which is calculated as follows:  

NPU (%) = {[Ni – (Nf – Nff)] / Ni} × BV 

(Carpenter, 1994d; Friedman, 1996). In this way, N efficiency is not calculated based on digested 

N. Evaluating digestibility is an important consideration for the determination of a protein’s 

quality, and in many ways digestibility can be used as an approximation for bioavailability (Stein 

et al., 2007a; 2007b). 

INTAKE AND DIGESTIBILITY 

Digestibility of Protein 

 Intake is only one component of nutrition. Bioavailability of nutrients is technically quite 

difficult to measure (Stein et al., 2007a). Therefore, an estimation for bioavailability is required. 

One such approximation for bioavailability that is nearly universally used in animal nutrition is 
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digestibility (Stein et al., 2007a; 2007b). Digestibility describes the difference between intake 

and output of a certain nutrient (Stein et al., 2007a; 2007b). In effect, the disappearance of a 

certain nutrient in the gastro-intestinal tract is assumed to reflect the absorption of that nutrient 

(Nyachoti and Stein, 2005; Stein et al., 2007a; 2007b).  

Total Tract Digestibility 

There are several ways to calculate digestibility of a nutrient. The simplest measure for 

digestibility is total tract digestibility. Total tract digestibility is by definition the fecal excretion 

of a nutrient subtracted from the intake of the nutrient. The difference divided by intake 

multiplied by 100 results in a digestibility value that is commonly reported as a percentage (Stein 

et al., 2007a). However, one of the problems with this approach is that there is no consideration 

for endogenous secretions of protein into the gastrointestinal tract. These secretions can originate 

from desquamated cells, mucins, enzymes, and bile acids (Nyachoti et al., 1997; Moughan, 

2003). Any of these secretions into the gut results in decreased digestibility values. In animal 

nutrition, total tract digestibility that is calculated without consideration for endogenous 

secretions is called apparent total tract digestibility (ATTD; NRC, 2012). If the quantity of 

endogenous secretions can be determined, it can be incorporated into the calculation for 

digestibility, counted against the output, and then give a more accurate representation of the 

actual digestibility of the nutrient. This digestibility is called the standardized total tract 

digestibility (STTD; NRC, 2012).  

Protein Digestibility Corrected Amino Acid Scoring (PDCAAS) 

A meeting held in November of 1980 by the Codex Committee on Vegetable Proteins 

(CCVP) first began the official discussion regarding the inadequacy of PER to reflect protein 

quality and in their second meeting two years later, RNPR was considered as a potential 
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alternative (FAO, 1991). However, at their 3rd and 4th sessions, in 1984 and 1987, respectively, 

the CCVP suggested amino acid scores as an improved method, but acknowledged that both in 

vitro methods for determining protein quality and amino acid concentration determination 

methodology were lacking (FAO, 1991). At the CCVP’s 5th session in 1989, the amino acid 

requirement data published for 2 to 5 y olds by a joint WHO/FAO/UNU venture were endorsed 

(WHO, 1985). The CCVP also recommended that a system utilizing amino acid scores corrected 

by amino acid requirements be created, however, in recognition of any such system’s potentially 

far-reaching implications, they recommended a joint FAO/WHO Expert Consultation be held 

(FAO, 1991; 2013). Subsequently, in December of 1989, an FAO/WHO Expert Consultation 

reviewing protein quality evaluation was held (FAO, 1991; 2013). The primary outcome of this 

meeting was the development of a new system for evaluation of protein quality: PDCAAS. 

The PDCAAS system utilized an in vivo rat assay to evaluate protein quality (FAO, 

1991). First, an amino acid score is calculated for the test protein based on the lowest amino acid 

ratio calculated using the amino acid requirements established by the FAO/WHO/UNU (WHO, 

1985; FAO, 1991). Ratios were determined by dividing the concentration in mg of each 

indispensable amino acid in 1 g of the test protein by the concentration of that same amino acid 

in 1 g of the reference pattern (WHO, 1985; FAO, 1991). Rats would be fed diets with a test 

protein formulated to 10% CP or a low-protein/protein-free diet and fecal N would be measured 

from both groups (FAO, 1991). Fecal N from rats fed the low or no protein diets was assumed to 

represent “metabolic nitrogen” or the basal endogenous N secretions (FAO, 1991). Using these 

values combined with intake, true digestibility of N could be calculated as follows: 

TD (%) = [Ni – (Nf - Nff) / Ni] × 100, 
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where TD is the true digestibility of N, Ni is the intake of N, Nf is fecal N of rats fed 

proteinaceous diets, and Nff is the fecal N of rats fed the low or no protein diets (FAO, 1991). By 

then multiplying the lowest amino acid ratio (amino acid score) by the true digestibility of N and 

multiplying that by 100, PDCAAS is determined. 

In many ways, the PDCAAS system was an improvement over the conventional methods 

for protein quality evaluation. It utilizes an economical, easily reproducible, in vivo assay that 

emphasized the importance of each indispensable amino acid as a distinct nutrient (FAO, 1991). 

Additionally, its amino acid focus enabled the possibility for the evaluation of diet mixtures and 

complementary ingredients (FAO, 1991; 2013). For these reasons, PDCAAS was the gold 

standard for protein quality evaluation for more than 20 years. However, although the 

measurement of fecal N digestibility can be made with relative ease, there are certain 

complications that arise from the use of fecal N digestibility as an indicator for amino acid 

digestibility. 

Ileal Digestibility 

The total tract digestibility of a nutrient can, technically, be measured in humans. In fact, 

the digestibility of protein in humans is often described using a measure of total tract 

digestibility. However, because proteins are composed of amino acids, total tract digestibility can 

be an oversimplification. In pigs, humans, and all other animals, amino acid absorption takes 

place entirely in the small intestine (Moughan et al., 2003). However, fecal content contains 

proteins that are synthesized by microbes in the hindgut and other non-dietary proteins. As a 

consequence, calculation of the ATTD or STTD of proteins will not result in an accurate 

estimate of protein digestion. However, if protein and amino acids that are leaving the small 

intestine are quantified and subtracted from the intake, the influence of the hindgut microbes is 
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avoided. The correlation between deposited protein and ileal digestible amino acids is greater 

than the correlation with fecal digestible protein and amino acids (Just et al., 1985; Leibholz, 

1985) Therefore, to more accurately determine bioavailability of protein/amino acids, 

measurements need to be taken before the hindgut, that is, at the terminal ileum.  

Eliminating the effect of hindgut fermentation of N on digestibility can and has been 

addressed in several ways in different species. In poultry, cecectomization is performed to 

minimize the effect of hindgut fermentation on protein metabolism and excreta output is 

presumed to represent digestibility of protein (Parsons et al., 1985). In humans, although fecal 

sampling is common, ileostomates have been used for collection of ileal effluent samples that 

may better reflect amino acid digestibility (Rowan et al., 1994; Darragh and Hodgkinson, 2000; 

Gaudichon et al., 2002). In limited cases, naso-ileal tubing has also been used to sample terminal 

ileal contents (Gaudichon et al., 2002; DeGlaire et al., 2009; Miner-Williams et al., 2014). 

However, this technique has several drawbacks in that it is relatively invasive, technically 

challenging, requires healthy volunteers, and is extremely costly (Gaudichon et al., 2002; 

DeGlaire et al., 2009; Miner-Williams et al., 2014). Additionally, studies using naso-ileal tubing 

are often acute-feeding studies and, therefore, do not account for adaptation to the diet (Miner-

Williams et al., 2014). Ileostomy procedures have, in theory, been conducted in pigs (Laplace et 

al., 1994), and several studies have been conducted using pigs that have undergone ileo-rectal 

anastomoses to determine disappearance of amino acids at the end of the ileum (Yin et al., 1993; 

Laplace et al., 1994; Mariscal-Landín et al., 1995). All of these techniques can mitigate or 

eliminate effects of hindgut metabolism on the digestibility of amino acids and protein, but there 

are several drawbacks to using these approaches.  
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Resection of the gastrointestinal tract, in any form, alters the natural physiology of any 

animal and introduces sources of potential variation from the metabolism of a typical subject. In 

addition, complete removal of the hindgut can alter the transit rate and time of digesta, and 

therefore, may change digestibility of ingredients and overall metabolism (Laplace, 1981; 

Laplace et al., 1994; Miner-Williams et al., 2014). In ileostomates, the removal of the colon can 

influence microbial infiltration of the ileum, with ileal effluent from ileostomates having counts 

of microbial organisms that are 80-fold greater than that of standard ileal samples (Rowan et al., 

1994). Alterations in the microbiome may have significant effects on metabolism (Miner-

Williams et al., 2014). In the pig, it has been estimated that up to 16% of the gross energy of the 

diet can be recovered in the large intestine (Shi and Noblet, 1993). Removal of the large 

intestine, therefore, alters energy balance of the animal and may introduce protein-energy 

interactions (Laplace et al, 1994). Removal of the large intestine involves removal of a 

substantial mass of metabolically active tissue, and therefore, subjects of these procedures may 

have different maintenance requirements compared with intact animals. The various anastomotic 

techniques in animal models were developed as alternatives to some of the initial cannulation 

techniques (Yin et al., 1993). The re-entrant cannulation technique, although effective, was 

technically challenging to implement and difficult to use in long-term studies in pigs (Yin et al., 

1993). However, improvements in the cannulation technique, in particular the use of “T-

cannulas”, made surgeries easier to perform, minimized invasiveness, and were effective long-

term implants (Furuya et al., 1974; Stein et al., 1998; 2007b). 

The precise surgical techniques are explained in detail by Furuya et al. (1974) and have 

been modernized by others (Decuypere et al., 1977; Gargallo and Zimmerman, 1980; Stein et al., 

1998). In brief, an incision is made in the terminal ileum of the pig and the T-cannula is then 
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inserted and sutured into place. The cannula is externalized via a separate, more dorsal incision 

and capped to prevent leakage. After a brief period of recovery, generally 7 to 10 days, the 

incisions are healed, the cannulas are secure, and ileal effluent samples can be collected at will 

(Stein et al., 1998).  

Time has proven that T-cannulation is effective, robust, and well accepted. Using this 

technique, hundreds of experiments have been conducted across the globe to determine ileal 

digestibility of amino acids in many feed ingredients. Indeed, T-cannulation derived ileal 

digestibility values have been the gold standard for formulation of swine diets for decades (NRC, 

1998; 2012). However, much like other measures of digestibility, there have been improvements 

within the ileal standard, as well. 

Apparent Ileal Digestibility (AID) 

 Similar to the equations by which ATTD is determined AID can be determined:  

AID (%) = [AAi – AAo / AAi] × 100, 

where AID is the apparent ileal digestibility, AAi is the amino acid intake from the diet, and AAo 

is the ileal ouput of amino acids (Stein et al., 2007b). However, unlike ileo-rectal anastomotic 

procedures, only a portion of ileal digesta are collected when using the cannulation technique 

and, therefore, indigestible markers need to be included in the diet to calculate digestibility: 

AID (%) = [1 – (AAdigesta /AAdiet) × (Mdiet / Mdigesta)] × 100, 

where AAdigesta is the amino acid concentration in the ileal digesta, AAdiet is the amino acid 

concentration from the diet, Mdiet is the concentration of the indigestible marker in the diet, and 

Mdigesta is the concentration of the indigestible marker in the ileal digesta (Stein et al., 2007b). 

Values for AID are arguably more relevant to protein deposition of the animal, however, despite 

this there are disadvantages with any of the apparent measure of digestibility. 
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 One of the primary concerns with AID values are their lack of additivity when using 

mixtures of ingredients (Stein et al., 2005). The reason for the lack of additivity is that diet amino 

acid level will affect the ileal outflow of amino acids (Fan et al., 1994) and as the level of amino 

acids in the diet increases, the relative contribution of endogenous losses to the total amino acid 

outflow is reduced. To overcome these obstacles, efforts were made to quantify endogenous 

amino acid losses, which consist of proteins synthesized by the animal, secreted into the small 

intestine and are not reabsorbed before reaching the large intestine (Hodgkinson and Moughan, 

2000). These endogenous amino acid losses can be further divided into two categories: basal 

endogenous losses or specific endogenous losses (Nyachoti et al., 1997; Jansman et al., 2002; 

Stein et al., 2007b). Basal endogenous losses are defined as the minimum quantities of amino 

acids that are lost by the animal and these losses are inevitable and completely independent from 

specific diet effects (Nyachoti et al., 1997; Jansman et al., 2002; Stein et al., 2007b). Specific 

losses, on the other hand, are those that are directly related to the diet and its composition (Stein 

et al., 2007b). These losses can vary among food and feed ingredients and are related to specific 

characteristics of the diet such as fiber-content and the presence of anti-nutritional factors (Stein 

et al., 2007b). 

True Ileal Digestibility (TID) 

In an effort to account for all endogenous losses, calculation of TID was suggested 

(Schumann et al., 1986). In this system, the total endogenous losses of amino acids are 

subtracted from the ileal outflow in an attempt to more accurately represent what is sometimes 

referred to in the literature as “real” digestibility. The equation is a modification of that for AID: 

TID (%) = AID + [(total AAend /AAdiet) × 100], 
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where total AAend represents the sum of basal and specific endogenous losses. This calculation 

effectively incorporates the metabolic cost of consuming a certain feed ingredient into the 

equation, however, specific endogenous losses are variable based upon ingredient composition of 

the diet. In practice, specific endogenous losses can be challenging to determine empirically. 

However, estimating basal endogenous losses enjoys a well-established protocol involving the 

use of protein-free or low-protein diets (Stein et al, 2007b). There are minimal differences in the 

basal endogenous losses when using either low-protein or protein-free diets (Jansman et al., 

2002), and formulation of protein-free diets has become formalized (Stein et al., 2007).  

Standardized Ileal Digestibility (SID) 

Utilizing the ability to determine the basal endogenous losses with relative certainty, one 

can calculate SID as follows:  

SID (%) = AID + [(basal AAend /AAdiet) × 100], 

where basal AAend represents the basal endogenous losses determined via the feed of a low or 

no-protein diet (Stein et al, 2007b). The value of the SID system is that it removes the variation 

that occurs in AID values when varying protein levels of an ingredient are used (Stein et al, 

2007b), and it enables additivity of values from individual ingredients when they are included in 

a mixed diet which is of practical importance to diet formulation (Stein et al., 2005). Because 

only the basal endogenous losses are subtracted from the ileal output when SID values are 

calculated, the specific endogenous losses are counted against each ingredient individually, 

which results in ingredients causing high specific endogenous losses of amino acids to be 

penalized in diet formulation. As a result, values for SID of amino acids have become available 

for nearly all feed ingredients fed to swine and SID digestibility is the gold standard for the 

formulation of swine diets throughout the world (NRC, 2012). The robustness of the SID system 
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resulted in this system not only being used to evaluate the availability of amino acids in an 

ingredient, but also to describe the requirements for amino acids in pigs (NRC, 1998; 2012). 

Decades of titration studies to determine amino acid requirements have enabled requirements for 

amino acids by pigs to be described on an SID basis, divided by both age and gender (NRC, 

2012).  

DIGESTIBLE INDISPENSABLE AMINO ACID SCORING (DIAAS) 

 In contrast to the accuracy, precision, and depth with which ileal digestible amino acid 

requirements in pigs have been determined, there is a dearth of these values for humans, despite 

the understanding that requirements based on ileal digestible amino acid values are ideal. 

However, there are various reasons for this difference; most importantly are ethical concerns and 

expenses of conducting research using human subjects versus animal subjects. To overcome 

some of these challenges modeling the human has proven a viable alternative (FAO, 2013).  

 The pig has been explored as a model for human protein nutrition on several occasions 

(Rowan et al., 1994; Moughan, 2003; Deglaire et al., 2009; FAO, 2013), and is generally 

considered the best available model (Rowan et al., 1994; Moughan, 2003; Deglaire et al., 2009; 

FAO, 2013). For these reasons, an ileal digestibility model using pigs was suggested as the 

successor for the PDCAAS system by an FAO Expert Consultation in 2011 (FAO, 2013). The 

DIAAS systems involves the following calculation: 

DIAAS (%) =  [(mg of digestible dietary indispensable amino acid in 1g of test protein) / (mg of 

the same amino acid in 1 g of reference protein) × 100]. 

DIAAS versus PDCAAS 

 The calculation to determine DIAAS values is similar to the calculation used to calculate 

PDCAAS with the exception that ileal digestibility values for each indispensable amino acid are 
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used. This change is arguably the most significant change from PDCAAS. Unlike PDCAAS, 

each of the indispensable amino acid in the reference protein are treated as an individual nutrient 

and are, in turn, each afforded an empirically determined digestibility value (FAO, 2013). 

Through this change, the dubious assumption that fecal N digestibility values can represent that 

of all amino acids is completely avoided. Additionally, the change from fecal to ileal digestibility 

more accurately represents the biological reality of amino acid absorption because amino acid 

absorption is completed before the end of the ileum (Rowan et al, 1994; Gaudichon et al., 2002; 

Deglaire et al., 2009; FAO, 2013).  

However, other DIAAS specific changes include a revised amino acid requirement 

pattern/reference protein (FAO, 2013). Not only were the requirements refined, but also 

expanded into 3 categories: birth to 6 m, 6 m to 3 y, and 3 y and older (FAO, 2013). Using these 

new reference patterns, 3 DIAAS values can be generated for a single protein, each reflecting its 

value as an amino acid source for an individual in each of these 3 age brackets. In addition, 

unlike PDCAAS, DIAAS values are not truncated at 1.00 or 100% (FAO, 2013). This change 

allows combined DIAAS values to be used to evaluate diets with more than one protein source 

(FAO, 2013). In consideration of the aforementioned points, the FAO made several decisions at 

the 2011 Expert Consultation. The first was that DIAAS was the recommended methods for 

dietary protein assessment for regulatory purposes, but until a substantial database with SID 

values for proteins commonly consumed by humans was established, fecal N digestibility values 

should be used (FAO, 2013). Secondly, it is recommended that ileal digestibility data for human 

foods should be preferentially determined using the pig model (FAO, 2013). 

More recently, it was also concluded that PDCAAS has a tendency to underestimate the 

quality of high-quality proteins and overestimate the quality of low-quality proteins (Rutherfurd 
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et al., 2015). Although perhaps seemingly an innocuous flaw, this potential error may have 

implications for individuals consuming primarily dietary sources of protein of lower quality. The 

advantage of using the DIAAS system, therefore, is greatest in assessing the adequacy of protein 

intake in populations typically consuming proteins of low quality and in low quantities. 

This most recent critique of the PDCAAS technique highlights the implications of a 

better understanding of protein quality. Accurate estimation of protein quality will enable an 

accurate formulation of diets that will meet the requirements of individuals. Although, to much 

of the developed world, protein quality may not be a critical nutritional issue, to large segments 

of the global population meeting daily amino acid requirements is not only difficult, it is in many 

cases impossible.  

DIAAS OF PROTEINS 

 In recent years, DIAAS values have been determined in several proteins using rats or 

pigs. Based on the recommendations of the FAO, the pig is the preferred model, whenever it is 

possible to use pigs. Nonetheless, several published values for DIAAS of various proteins 

determined using rats have been published (Rutherfurd et al., 2014; Nosworthy et al., 2017a; 

2017b; 2018). However, methodologies within these experiments differed. The 2014 study by 

Rutherfurd et al. euthanized the rats and collected ileal digesta samples to determine the 

digestibility of individual amino acids for calculation of DIAAS values. However, all studies 

conducted by Nosworthy et al., used fecal digestibility of N to determine DIAAS (Nosworthy et 

al., 2017a; 2017b; 2018). Although the FAO recommendations do allow for the use of fecal 

crude protein digestibility when amino acid digestibility data is not available, it also specifies 

that in vivo assays to determine true ileal amino acid digestibility should be conducted when new 

foods are being assayed (FAO, 2013). All studies conducted by Nosworthy et al. (2017a; 2017b; 
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2018) were conducted using previously unstudied legume products. Accordingly, the DIAAS 

values presented by their data should have been determined using ileal digestibility values for 

amino acids. At least one study determined DIAAS via an in vitro gastrointestinal model, 

however, as this methodology has yet to be validated by comparisons with in-vivo data, results 

should be interpreted cautiously (Havenaar et al., 2016). 

Values for  DIAAS are available for several cereal grains including corn, barley, oats, oat 

protein concentrate, rice, rye, sorghum, and wheat (Cervantes-Pahm et al., 2014; Rutherfurd et 

al., 2015; Mathai et al., 2017; Abelilla et al., 2018). Although the DIAAS values of these 

proteins are varied, none but rolled oats scored greater than the minimum recommended score of 

75 for a “good” source of protein made by the FAO (FAO, 2013; Cervantes-Pahm et al., 2014; 

Rutherfurd et al., 2015; Abelilla et al., 2018). Cooked rolled oats, however, received a lower 

DIAAS (Rutherfurd et al., 2015). Additionally, legume-based ingredients such as soy flour, soy 

protein isolates, and roasted peanuts have been evaluated for their DIAAS values (Rutherfurd et 

al., 2015). In general, the soy products have met the FAO standard for “good” proteins 

(Rutherfurd et al., 2015). Several animal proteins, both dairy and meat-based, have also had their 

DIAAS evaluated (Rutherfurd et al., 2015; Bindari et al., 2018). Dairy proteins have generally 

scored highly Rutherfurd et al., 2015), however, the porcine and bovine tissue hydrolysates 

tested by Bindari et al. (2018) were of varying protein quality. In the study conducted by 

Rutherfurd et al., DIAAS values for animal proteins were higher than those for plant proteins due 

to higher amino acid digestibility values and the amino acid compositions of the animal proteins 

(Rutherfurd et al., 2015). The DIAAS system is better suited for evaluation of mixtures of 

ingredients than alternative methods, yet to date, no studies have been published that evaluate 

diets or ingredient mixtures for their DIAAS values. However, Rutherfurd et al. (2015) 
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calculated values for a combination of a corn-based breakfast cereal and milk protein concentrate 

that did have determined DIAAS values to emulate a common breakfast meal in the developed 

world. Results indicated that the two proteins complemented each other well.  

CONCLUSION 

 Though the beginnings of protein quality evaluation began over a century ago, significant 

and meaningful progress has been steadily made. In continued efforts to create robust, reliable, 

and relevant methodologies, several iterations have been proposed. The DIAAS system 

represents the most recent of such iterations and signifies an effort to both modernize and refocus 

discussions of protein quality on amino acids and their physiological relevance. Unlike its 

predecessors, DIAAS represents several paradigm shifts in that it changes the primary animal 

model used for protein quality determination, it treats each indispensable amino acid as a distinct 

nutrient, and that it accounts for each amino acid’s individual absorption. 

 However, before DIAAS can be fully accepted as an official methodology for 

determination of protein quality, DIAAS itself must undergo rigorous evaluation. For DIAAS to 

replace the current methodologies, DIAAS must first prove its consistency There remains a need 

for the generation of a database of DIAAS values for various proteins in order to facilitate the 

adoption of DIAAS values for diet formulation. Furthermore, the repeatability, precision, and 

accuracy of DIAAS values has yet to be fully determined. Nonetheless, after adequate validation, 

DIAAS values will represent the forefront methodology for evaluation of protein quality in 

foods.  
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CHAPTER 3: VALUES FOR DIGESTIBLE INDISPENSABLE AMINO ACID SCORES 

(DIAAS) FOR SOME DAIRY AND PLANT PROTEINS MAY BETTER DESCRIBE 

PROTEIN QUALITY THAN VALUES CALCULATED USING THE CONCEPT FOR 

PROTEIN DIGESTIBILITY CORRECTED AMINO ACID SCORES (PDCAAS) 

 

 

ABSTRACT: An experiment was conducted to compare values for digestible indispensable 

amino acid scores (DIAAS) for 4 animal proteins and 4 plant proteins with values calculated as 

recommended for protein digestibility corrected amino acid scores (PDCAAS), but determined in 

pigs instead of in rats. Values for standardized total tract digestibility (STTD) of crude protein 

(CP) and standardized ileal digestibility (SID) of amino acids were calculated for whey protein 

isolate (WPI), whey protein concentrate (WPC), milk protein concentrate (MPC), skim milk 

powder (SMP), pea protein concentrate (PPC), soy protein isolate (SPI), soy flour, and whole 

grain wheat. The PDCAAS-like values were calculated using the STTD of CP to estimate amino 

acid digestibility and values for DIAAS were calculated from values for SID of amino acids. 

Results indicated that values for SID of most indispensable amino acids in WPI, WPC, and MPC 

were greater (P < 0.05) than for SMP, PPC, SPI, soy flour, and wheat. With the exception of 

arginine and tryptophan, the SID of all indispensable amino acids in SPI was greater (P < 0.05) 

than in soy flour, and with the exception of threonine, the SID of all indispensable amino acids in 

wheat was less (P < 0.05) than in all other ingredients. If the same scoring pattern for children 

between 6 and 36 months was used to calculate PDCAAS-like values and DIAAS, PDCAAS-

like values were greater (P < 0.05) than DIAAS values for SMP, PPC, SPI, soy flour, and wheat 
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indicating that PDCAAS-like values estimated in pigs may overestimate the quality of these 

proteins.  

Key words: pigs, PDCAAS, DIAAS, protein quality, plant protein, dairy protein 

 

INTRODUCTION 

The protein digestibility corrected amino acid score (PDCAAS) has been used for more 

than 20 years to evaluate protein quality in human nutrition, but the PDCAAS procedure has 

limitations because values are calculated from the total tract digestibility of crude protein (CP) 

and calculations for PDCAAS are based on the assumption that all amino acids have the same 

digestibility as CP. It is, however, recognized that digestibility of amino acids is most correctly 

determined at the end of the small intestine (the ileum) because amino acids are absorbed only 

from the small intestine and because hindgut fermentation can affect fecal amino acid excretion 

(Sauer and Ozimek, 1986). Therefore, ileal digestibility is a more accurate estimate of amino 

acid bioavailability than total tract digestibility in both humans and pigs (Stein et al., 2007; 

Cervantes-Pahm et al., 2014). In addition, the digestibility of CP is not representative of the 

digestibility of all amino acids (Stein et al., 2007), because individual amino acids are digested 

with different efficiencies (Stein et al., 2007). Other criticisms of the PDCAAS procedure have 

been recently reviewed and include use of truncation to avoid having values greater than 1, use 

of a scoring pattern that is based on amino acid requirements for children, and use of metabolic 

fecal nitrogen to correct for endogenous losses of amino acids (Schaafsma, 2012; Gilani, 2012; 

Rutherfurd et al., 2015). It was also recently concluded that PDCAAS generally underestimates 

the value of high-quality proteins and overestimates the value of low-quality proteins 

(Rutherfurd et al., 2015). 
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To avoid the flaws of the PDCAAS procedure, the FAO now recommends an amino acid 

evaluation procedure called digestible indispensable amino acid score (DIAAS; FAO, 2013). To 

calculate DIAAS, it is necessary to determine the digestibility of individual amino acids at the 

end of the small intestine and the pig has been recognized as an appropriate model for estimating 

CP and amino acid digestibility in foods for humans (FAO, 2013; Rowan et al., 1994; Deglaire et 

al., 2009). In contrast, PDCAAS values according to the original definition are determined in rats 

(FAO, 1991). The apparent ileal digestibility of amino acids is defined as the net disappearance 

of ingested dietary amino acids from the digestive tract prior to the distal ileum (Stein et al., 

2007). If values for apparent ileal digestibility are corrected for the basal endogenous losses of 

amino acids, the resulting values are described as standardized ileal digestibility (SID; Stein et 

al., 2007). Values for SID of amino acids are additive in mixed diets (Stein et al., 2005) and may 

be used to calculate DIAAS in proteins used in human nutrition (Cervantes-Pahm et al., 2014;  

(FAO, 2013). 

Research in our laboratory estimated DIAAS in eight cereal grains by calculating SID 

values for all indispensable amino acids in pigs (Cervantes-Pahm et al., 2014). Results indicated 

that to meet dietary requirements for amino acids in humans, diets based on sorghum, wheat, rye, 

or maize require more amino acid supplementation than diets based on polished rice or de-hulled 

oats. However, in human nutrition, protein is usually supplied by either animal-based proteins or 

plant-based proteins. Animal proteins include a number of dairy products, and commonly used 

dairy proteins include whey protein concentrate (WPC), whey protein isolate (WPI), milk 

protein concentrate (MPC), and skim milk powder (SMP). Commonly used plant proteins 

include soy protein isolate (SPI), soy flour, and pea protein concentrate (PPC). To our 

knowledge, there are no published values for DIAAS for these proteins that have been 
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determined in pigs and it is not known how values for DIAAS determined in pigs compare with 

PDCAAS-like values determined in pigs. Therefore, the aim of this experiment was to compare 

PDCAAS-like values determined in pigs and values for DIAAS in 8 commonly used proteins 

and test the hypothesis that values for DIAAS are more appropriate to quantify protein quality 

than values for PDCAAS.  

MATERIALS AND METHODS 

Diets, Animals, Housing, and Experimental Design 

The protocol for the experiment was reviewed and approved by the Institutional Animal 

Care and Use Committee at the University of Illinois.  Four dairy proteins (WPI, WPC, MPC, 

and SMP) were procured from Cereal Byproducts Company, Mt. Prospect, Illinois, USA. Soy 

protein isolate and soy flour were obtained from Archer Daniels Midland Company, Decatur, 

Illinois, USA, and PPC was obtained from AGT Foods, Bismarck, North Dakota, USA. Wheat 

was obtained from Siemers, Teutopolis, Illinois, USA (Table 3.1). Each ingredient was included 

in one diet as the only source of CP and amino acids with the exception that wheat was included 

in combination with soy flour (Tables 3.2 and 3.3). A nitrogen-free diet was also formulated to 

measure basal endogenous losses of CP and amino acids. Vitamins and minerals were included 

in all diets to meet or exceed current requirement estimates for growing pigs(NRC, 2012). All 

diets also contained 0.4% chromic oxide as an indigestible marker and all diets were provided in 

meal form.  

Nine growing barrows (initial body weight: 26.25 ± 1.48 kg) were equipped with a T-

cannula in the distal ileum using procedures adapted from Stein et al.(1998). Pigs were allowed a 

7-d recovery after the surgery and they were then allotted to a 9 × 9 Latin square design with 

nine diets and nine 9-day periods. No pig received the same diet more than once during the 
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experiment and there was, therefore, nine replicate pigs per treatment. With nine replicates we 

expected to be able to detect differences in SID values among ingredients of 2.5 to 4 percentage 

units (depending on the amino acid). Pigs were housed in individual pens (0.9 × 1.8 m) in an 

environmentally controlled room. Pens had smooth sides and fully slatted concrete floors. A 

feeder and a nipple drinker were installed in each pen. At the conclusion of the experiment, pigs 

were approximately 19 weeks of age and had a body weight of 84.70 ± 6.48 kg.  

Data Recording and Sample Collection 

All pigs were fed their assigned diets in a daily amount of three times the estimated 

energy requirement for maintenance (824 kJ metabolizable energy per kg0.60; NRC, 2012). The 

daily feed allotment was provided every day at 0800 h. Water was available at all times. Pig 

weights were recorded at the beginning of each period and at the conclusion of the experiment. 

The amount of feed supplied each day was recorded as well.  The initial five days of each period 

were considered an adaptation period to the diet. Fecal samples were collected on days 6 and 7 

and immediately frozen at – 20°C. Ileal digesta were collected for 8 hours (from 0800 to 1600 h) 

on days 8 and 9 using standard operating procedures (Stein et al., 1998).  Briefly, cannulas were 

opened and cleaned, a plastic bag was attached to the cannula barrel and digesta flowing into the 

bag were collected. Bags were removed whenever they were filled with digesta or at least once 

every 30 min, and immediately frozen at – 20°C to prevent bacterial degradation of the amino 

acid in the digesta. Individual pig weights recorded at the conclusion of each period were used to 

calculate the feed provision for the subsequent period. 

Chemical Analysis 

At the conclusion of the experiment, fecal samples were dried in a forced air oven and 

finely ground through a 1-mm screen in a Wiley Mill (Model 4; Thomas Scientific, Swedesboro, 
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NJ) prior to analysis. Ileal samples were thawed, mixed within animal and diet, and a sub-sample 

was collected for analysis. A sample of each source of protein and of each diet was collected at 

the time of diet mixing. Digesta samples were lyophilized and finely ground prior to chemical 

analysis. Diets, ingredients, fecal samples, and ileal samples were analyzed for dry matter 

(Method 927.05; AOAC, 2007) and CP by combustion (Method 990.03; AOAC, 2007) on an 

Elementar Rapid N-cube protein/nitrogen apparatus (Elementar Americas Inc., Mt. Laurel, NJ). 

Aspartic acid was used as a calibration standard and CP was calculated as N × 6.25. Samples 

were analyzed in duplicate, but analyses were repeated if the analyzed values were more than 5% 

apart. Diets, fecal samples, and ileal digesta were also analyzed in duplicate for chromium 

(Method 990.08; AOAC, 2007) and all diets, ingredients, and ileal digesta samples were 

analyzed for amino acids on a Hitachi Amino Acid Analyzer (Model L8800, Hitachi High 

Technologies America Inc., Pleasanton, CA) using ninhydrin for post-column derivatization and 

nor-leucine as the internal standard. Samples were hydrolyzed with 6N HCl for 24 h at 110°C 

prior to analysis, but methionine and cysteine were analyzed as methionine sulfone and cysteic 

acid after cold performic acid oxidation overnight before hydrolysis and tryptophan was 

determined after NaOH hydrolysis for 22 h at 110°C [Method 982.30 E (a, b, c); (AOAC, 

2007)].     

Calculations 

Values for apparent ileal digestibility of CP and amino acids, basal endogenous losses of 

CP and amino acids, and SID of CP and amino acids were calculated for all diets as previously 

explained (Stein et al., 2007). For all ingredients except wheat, the SID for CP and amino acids 

in the diets also represented the SID of the ingredient, but for wheat, the SID of CP and amino 

acids were calculated using the difference procedure (Rojas and Stein, 2013).  Values for the 
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standardized total tract digestibility (STTD) of CP were calculated as explained for the 

calculation of SID of CP.  

The concentration of SID amino acids (g/kg) in each ingredient was calculated by 

multiplying the SID value (%) for each amino acid by the concentration (g/kg) of that amino acid 

in the ingredient, and this value was then divided by the concentration of CP in the ingredient to 

calculate digestible indispensable amino acid content (mg) in 1 g protein (Cervantes-Pahm et al., 

2014). The digestible indispensable amino acid reference ratios were calculated for each 

ingredient using the following equation (FAO, 2013): Digestible indispensable amino acid 

reference ratio = mg of digestible indispensable amino acid content in 1 g protein of food / mg of 

the same dietary indispensable amino acid in 1g of the reference protein. The reference proteins 

were based on FAO (FAO, 2013) and separate ratios were calculated using the reference protein 

for infants less than 6 months old, children from 6 months old to 36 months old, and children 

older than 36 months old, adolescents, and adults (FAO, 2013).  The DIAAS values were then 

calculated using the following equations:  

DIAAS (%) = 100 × lowest value of the digestible indispensable amino acid reference 

ratio (FAO, 2013).  

Values for STTD of CP were used to calculate PDCAAS-like values using the following 

equation (Schaafsma, 2000): 

PDCAAS-like values (%) = mg of limiting amino acid in 1g of test protein/mg of the 

same amino acid in 1 g of reference protein × standardized total tract digestibility (%) × 100.  

Calculation of PDCAAS-like values used the reference protein for 2 to 5 year old 

children as recommended if values are calculated from STTD of CP in rats (FAO, 1991). 
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However, to allow for a direct comparison between PDCAAS-like values and values for DIAAS, 

PDCAAS-like values were also calculated using the three reference proteins that were used to 

calculate DIAAS values (FAO, 2013). 

Statistical analyses 

Normality of data was verified and outliers were identified using the UNIVARIATE and 

BOXPLOT procedures, respectively (SAS Institute Inc., Cary, NC). Data were analyzed by 

ANOVA using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) in a randomized 

complete block design with the pig as the experimental unit. The statistical model to determine 

differences in SID of amino acid values among ingredients included diet as the main effect and 

pig and period as random effects. The model to compare values for SID and STTD of CP within 

each ingredient included calculation procedure (SID or STTD) as main effect and pig and period 

as random effects. The model to compare values for DIAAS and PDCAAS used calculation 

procedure (DIAAS or PDCAAS) as main effect and pig and period as random effects. Treatment 

means were calculated using the LSMEANS statement, and if significant, means were separated 

using the PDIFF option of the MIXED procedure. Significance and tendency was considered at 

P < 0.05 and 0.05 ≤ P < 0.10, respectively. 

RESULTS 

All pigs remained healthy throughout the experiment and readily consumed their diets. 

Gross chemical composition of all ingredients was generally in agreement with published values 

(NRC, 2012). The concentration of CP in ingredients ranged from 11.67 to 92.66%. 

With the exception of Tyr, the SID of all amino acids was not different between WPI and 

WPC (Table 3.4). The SID of Ile, Cys, and Ser was less (P < 0.05) in MPC than in WPI and 

WPC, and the SID of Val and Glu was less (P < 0.05) in MPC than in WPI, but for all other 
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amino acids, no differences among MPC, WPI, and WPC were observed. However, the SID of 

most amino acids was greater (P < 0.05) in WPI, WPC, and MPC than in SMP, PPC, soy flour, 

and wheat, but for SPI, many amino acids had SID values that were not different from those in 

WPI, WPC, and MPC. With the exception of Arg, Trp, Ala, and Gly, the SID of all amino acids 

was greater (P < 0.05) in SPI than in soy flour. The SID of Met, Trp, and Cys was less (P < 0.05) 

in PPC than in soy flour and the SID of Asp and Glu was greater (P < 0.05) in PPC than in soy 

flour, but for all other amino acids, no difference between these 2 ingredients was observed. The 

SID of all indispensable amino acids and of Ala and Tyr was less (P < 0.05) in wheat than in all 

other ingredients. 

The SID of CP was greater (P < 0.05) than the STTD of CP for WPI, WPC, and wheat 

(Table 3.5). In contrast, the STTD of CP was greater (P < 0.05) than the SID of CP in MPC, 

SMP, and SPI, whereas no difference between SID and STTD of CP was observed for PPC and 

soy flour.   

The protein digestibility corrected amino acid reference ratios calculated according to the 

recommendations from FAO/WHO (FAO, 1991) but using pigs instead of rats and based on the 

scoring pattern for preschool children (2 to 5 years old) are presented in Table 3.6. However, the 

protein digestibility corrected amino acid reference ratios calculated from STTD values of CP in 

pigs were also calculated according to FAO (FAO, 2013) and based on requirements of infants 

(birth to 6 months of age), children (6 months to 3 years of age), and older children (older than 3 

years of age) adolescents, and adults, and these values are presented in Table 3.7. Likewise, the 

digestible indispensable amino acid reference ratios calculated according to FAO (FAO, 2013) 

and based on the same three age groups are presented in Table 3.8.  
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If PDCAAS-like values calculated according to FAO/WHO (FAO, 1991) were truncated 

as recommended, values for WPC, MPC, SMP were less (P < 0.05) than values for DIAAS, 

whereas PDCAAS-like values for PPC, SPI, soy flour, and wheat were greater (P < 0.05) than 

for DIAAS (Table 3.9). However, if PDCAAS-like values were not truncated, the PDCAAS-like 

value for WPC was not different from DIAAS, but PDCAAS-like values for MPC and SMP 

were greater (P < 0.05) than DIAAS. If PDCAAS-like values were calculated according to the 

same scoring pattern as DIAAS (FAO, 2013), PDCAAS-like values for SMP, PPC, SPI, soy 

flour, and wheat were greater (P < 0.05) than values for DIAAS, whereas the PDCAAS-like 

value for WPI was less (P < 0.05) than the DIAAS for WPI.  

For DIAAS values, the first limiting amino acid in WPI and WPC was His, but for MPC, 

SMP, PPC, SPI, and soy flour, the sulfur amino acids were first limiting, and Lys was first 

liming in wheat. If PDCAAS-like values were calculated using the same scoring patterns as used 

to calculate DIAAS, the first limiting amino acid in the proteins was not different from those 

identified for DIAAS. However, if PDCAAS-like values were calculated using the original 

scoring patterns (FAO, 1991), either truncated or not truncated, the first limiting amino acid for 

whey proteins was the aromatic amino acids and Thr was first limiting in MPC and the sulfur 

amino acids were first limiting in SMP and SPI. However, the first limiting amino acid in PPC 

was Trp, whereas Lys was first limiting in soy flour and wheat.  

Calculated PDCAAS-like values for infants were greater (P < 0.05) than values for 

DIAAS for SMP, PPC, SPI, and wheat, whereas the value for DIAAS for WPI tended (P = 

0.062) to be greater than the PDCAAS-like value (Table 3.10). For children older than 3 years, 

adolescents, and adults, PDCAAS-like values for SMP, PPC, and SPI was greater (P < 0.05) 
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than DIAAS, and the PDCAAS-like value for soy flour tended (P = 0.053) to be greater than 

DIAAS. In contrast, the DIAAS for WPI was greater (P < 0.05) than the PDCAAS-like value.   

The first limiting amino acids for DIAAS calculated for infants were the aromatic amino 

acids for the whey proteins, Trp for MPC and PPC, Thr for SMP, the sulfur amino acids for SPI, 

Leu for soy flour, and Lys for wheat. The first limiting amino acid for PDCAAS-like values 

calculated for infants in SMP was Trp, but for all other ingredients, the first limiting amino acid 

in the calculation of DIAAS was also first limiting for PDCAAS-like values. For children greater 

than 3 years old, adolescents and adults, the first limiting amino acid for both DIAAS and 

PDCAAS-like values for all proteins were the same as those identified for children from 6 

months to 3 years old.  

DISCUSSION 

 The amount and quality of protein consumed throughout the world varies depending on 

protein availability, amino acid composition of proteins, and digestibility of amino acids 

(Schaafsma, 2000). In many parts of the world, plant proteins are the primary sources of amino 

acids in the diet (Cervantes-Pahm et al., 2014; Schönfeldt and Hall, 2012; Swaminathan et al., 

2012), whereas animal proteins are the primary sources of amino acids in other parts of the world 

(Swaminathan et al., 2012). However, the composition and digestibility of both of these types of 

proteins differ (Cervantes-Pahm et al., 2014; Gilani and Sepehr., 2003), and both plant and 

animal proteins, therefore, need to be evaluated. In the present experiment we attempted to do 

that, but it is acknowledged that all proteins were fed as raw ingredients without the processing 

that these ingredients most often go through before consumption by humans. If processing 

changes the digestibility of the protein, results may be different. Other limitations of the 
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experiment include the assumption that amino acid digestibility in growing castrated male pigs 

are representative of values obtained in both male and female humans of all ages.  

 In the current experiment, values for amino acid digestibility calculated from the total 

tract digestibility of CP were estimated from pigs although the rodent is the recommended model 

in the definition of PDCAAS (FAO, 1991). However, it was the objective to determine if total 

tract digestibility values for CP can be used to accurately estimate ileal digestibility values of 

individual amino acids and if we had used a rodent to calculate PDCAAS values and the pig to 

calculate DIAAS values, any differences would have been confounded by using the two different 

animal models. It is, therefore, important that the comparison is done within the same animal and 

because the pig has been recommended as the preferred animal model to calculate DIAAS values 

(FAO, 2013), we chose to use the pig to also calculate PDCAAS-like values in this study.  

As expected, dairy proteins had greater SID values than the plant proteins and they are, 

therefore, considered high quality proteins for humans (James et al., 2014; McAllan et al., 2014; 

Stanstrup et al., 2014). Protein quality in WPC, SMP, and SPI or soy protein concentrate have 

been studied in rats, and results indicated that WPC had greater PDCAAS than SMP, SPI, and 

soy protein concentrate (Rutherfurd et al., 2015; Gilani and Sepehr., 2003). Results of this 

experiment agree with previous results and also indicate that the PDCAAS-like value for WPC is 

greater than for SMP and that the whey proteins have a more balanced amino acid profile 

compared with whole milk protein. The major protein in SMP is casein, which has a low 

concentration of cysteine, and this may be the reason for the reduced PDCAAS-like value for 

SMP compared with WPC.  

According to the FAO recommended amino acid patterns for older children, adolescents, 

and adults and recommendations for nutrient claims, all dairy proteins tested in this experiment 
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can be considered “excellent/high” quality sources of protein, with DIAAS greater than or equal 

to 100 (FAO, 2013). By the same guidelines, SPI and soy flour qualify as “good” sources of 

protein, with a score greater than or equal to 75 and less than 100. In contrast, proteins with 

DIAAS less than 75 are recommended to make no claims regarding protein quality (FAO, 2013), 

and PPC and wheat tested in this experiment fall into this category. However, it is recognized 

that the cut-off values for protein quality assessments that were proposed were arbitrarily chosen 

and not based on documented research (FAO, 2013).  

The nitrogen-free diet was used to estimate endogenous amino acid losses. Values 

obtained using this procedure are estimates for the basal endogenous losses that are independent 

of the diet and secreted only in response to dry matter being present in the small intestine (Stein 

et al., 2007). In addition to the basal endogenous losses, diet specific endogenous losses may also 

occur, but these losses will not be included in the values obtained from the nitrogen-free diet, and 

therefore, diet specific losses are debited against the ingredients in the calculations of SID 

values. Thus, if a specific diet or ingredient induces diet-specific endogenous losses because of 

high concentrations of dietary fiber or anti-nutritional factors, the SID values for that diet or 

ingredient will be reduced compared with values for a diet or ingredient that does not induce 

specific endogenous losses. However, because endogenous losses are truly lost from the body, 

values for SID will give a better estimate of the amino acids that are available for metabolism 

than if values for diet-specific endogenous losses had not been debited against the ingredient or 

diet. The calculated values for the SID of glycine in several ingredients exceeded 100% in the 

current experiment, which is not biologically possible, but these values are an artifact that is 

caused by an overestimation of endogenous glycine, which often happens when the nitrogen-free 

procedure is used to determine endogenous losses of amino acids (Stein et al., 2007).  
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 For all proteins, SID values were different among both indispensable and dispensable 

amino acids indicating that one single value cannot be used to estimate the digestibility of 

individual amino acids as is assumed in the calculation of PDCAAS (FAO, 1991). For all 

ingredients used in this experiment with the exception of wheat, threonine had a lower SID value 

than lysine, which is usually the case for proteins that are not heat damaged. This is a result of 

the greater concentrations of threonine than of lysine and other indispensable amino acids in 

mucin protein secreted into the small intestine (Stein et al., 1999). Mucin protein is resistant to 

protease digestion, and therefore is included in the endogenous protein fraction that reaches the 

distal end of the ileum in pigs without being hydrolyzed. We are not aware of data for the amino 

acid composition of mucin in humans, but it has been reported that the ileal digestibility of 

threonine in humans is less than that of other indispensable amino acids, which indicates that 

mucin in humans also may have a high concentration of threonine (Rowan et al., 1994), 

(Deglaire et al., 2009). The observation that both lysine and tryptophan in wheat had a lower SID 

value than threonine may indicate that the wheat used in this experiment had been heat damaged 

during drying or grinding.  

The differences between values for SID and STTD of CP that were observed are in 

agreement with reports indicating that the apparent ileal digestibility of CP is different from the 

apparent total tract digestibility of CP (Sauer and Ozimek, 1986; Knabe et al., 1989). In most 

cases, the total tract digestibility of CP is greater than the ileal digestibility because of absorption 

of ammonia from the hindgut (Hendriks et al., 2012; Boye et al., 2012), but as illustrated in this 

experiment, in some cases, nitrogen may be secreted into the hindgut resulting in a reduced value 

for STTD compared with SID. However, because nitrogen exchange in the hindgut does not 

contribute to the amino acid balance in humans and monogastric animals and because amino 
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acids are absorbed only in the small intestine, the differences between STTD and SID values 

illustrate why values for STTD do not always represent absorption of amino acids. Thus, the use 

of STTD of CP to estimate the digestibility of all amino acids in the PDCAAS system will result 

in inaccuracies of estimates for amino acid digestibility, which has also been previously 

illustrated (Rutherfurd et al., 2015; McAllan et al., 2014).   

 In addition to the lack of digestibility values for individual amino acids, a major 

limitation of the PDCAAS system is that all scores are truncated to 100% with the rationale that 

any amount of amino acids beyond the requirement pattern confers no additional benefit to the 

individual consuming the protein (FAO, 2013; Schaafsma, 2000; Boye et al., 2012; Sarwar, 

1997). This assumption, however, neglects the complementary effect that excess amino acids 

may have in combination with amino acids from other proteins (Boye et al., 2012; Sarwar, 1997), 

and as a consequence, PDCAAS values do not give credit for extra indispensable amino acids 

that a protein may add to a diet (Boye et al., 2012; FAO, 2007). In contrast to the PDCAAS 

system, values for DIAAS are not truncated to 100%, and therefore, give credit to a protein 

based on its value as a complementary source of amino acids with other sources of proteins in a 

mixed diet (Rutherfurd et al., 2015).   

 Despite the challenges with the PDCAAS procedures, which have been previously 

reviewed (Schaafsma, 2012; Boye et al., 2012; Sarwar, 1997), it is important to recognize that 

criticism related to the scoring patterns that were originally suggested (FAO, 1991) can be easily 

overcome by adopting different scoring patterns. Indeed, in a later report from WHO/FAO, 

scoring patterns for several age groups of children, teenagers, and adults were suggested (FAO, 

2007). Likewise, the problems associated with truncation can also be easily corrected by using 

un-truncated values (Boye et al., 2012). As a consequence, the principal methodological 
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difference between values calculated for PDCAAS and values calculated for DIAAS is related to 

the assumption that the small intestinal absorption of individual amino acids can be predicted 

from the total tract digestibility of CP. As was clearly illustrated in this experiment, differences 

in the ileal digestibility among individual amino acids in all proteins exist with the digestibility 

of threonine being the least for most proteins. As a consequence, the ileal digestibility of amino 

acids cannot be accurately predicted from a single value obtained for the total tract digestibility 

of CP. It is also clearly illustrated that both STTD and SID of CP overestimate the ileal 

digestibility of amino acids for proteins with lower amino acid digestibility and as a 

consequence, values for PDCAAS that are predicted from the STTD of CP are expected to be 

less accurate for proteins with low amino acid digestibility than for proteins with greater amino 

acid digestibility. These principles are illustrated by the data in Table 3.9 where PDCAAS-like 

values are calculated according to the original recommendation (FAO, 1991) with scoring 

patterns for 2 to 5 year old children and all values are truncated to 100. The observation that the 

PDCAAS-like values for WPC, MPC, and SMP are much less than values for DIAAS is a 

consequence of truncation. However, if values are not truncated, none of these proteins have 

PDCAAS-like values that are less than values for DIAAS. Indeed, removing the truncation 

resulted in PDCAAS-like values that were greater than values for DIAAS for 6 of the 8 protein 

sources, indicating an overestimation of protein quality by using PDCAAS-like values. Values 

for DIAAS were calculated based on the scoring pattern for children from 6 to 36 months (FAO, 

2013), and because this scoring pattern is different from the original PDCAAS scoring pattern 

(FAO, 1991), this will influence the calculations. However, even if the PDCAAS-like values 

were calculated using the DIAAS scoring pattern, PDCAAS-like values for 5 of the 8 proteins 

were greater than values for DIAAS. This observation is a consequence of the fact that total tract 
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digestibility of CP is usually greater than the ileal digestibility of amino acids as discussed 

above, and as expected, the difference between PDCAAS-like values and DIAAS is greater for 

proteins with lower amino acid digestibility than for proteins with greater digestibility. Thus, it 

appears that the major inaccuracies in the calculation of PDCAAS are a consequence of the 

incorrect assumption that the ileal digestibility of all indispensable amino acids can be predicted 

from the total tract digestibility of CP. This inaccuracy will have greater impact on evaluation of 

proteins used in developing countries than in developed countries, because foods typically 

consumed in many developing countries have lower digestibility of CP than food typically 

consumed in developed countries (Gilani et al., 2005). 

 If PDCAAS-like values and DIAAS values were calculated for children older than 6 

months or for adults and if the same scoring pattern was used, no differences between the 2 

methodologies in terms of predicting the first limiting amino acid were observed with lysine 

being first limiting in wheat, histidine being first limiting in the whey proteins and the sulfur 

amino acids being first limiting in the whole milk proteins and the soy and pea proteins. 

However, if the original scoring pattern for PDCAAS was used, the predicted first limiting 

amino acids were different for all proteins except SMP, PPC, and wheat, which illustrates that 

the choice of scoring pattern will influence, which amino acid is predicted to be first limiting in a 

specific protein.   

The observation that PDCAAS-like values and values for DIAAS were much less if the 

scoring pattern for infants (i.e., those under 6 months of age) was used instead of scoring patterns 

for older children or adults illustrate the high protein quality that is needed in proteins by infants. 

The fact that some of the proteins, such as PPC and wheat, have very low DIAAS and PDCAAS-
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like values for infants is likely of minor consequence because these proteins are not expected to 

be used to a great extent in the feeding of infants.  

CONCLUSION 

In conclusion, data from this experiment indicate that PDCAAS-like values calculated 

from the total tract digestibility of CP in pigs and DIAAS values for dairy proteins are greater 

than for proteins obtained from soybeans, peas, or wheat. Data also indicate that for most 

proteins, significant differences between PDCAAS-like values and DIAAS were observed. 

Whereas some of the flaws in the calculation of PDCAAS can be corrected by using different 

scoring patterns, the fundamental problem with values for PDCAAS is that they are calculated 

using the incorrect assumption that the ileal digestibility of all amino acids can be predicted from 

the total tract digestibility of CP. Because of this assumption, PDCAAS values do not accurately 

predict ileal amino acid digestibility and it appears that specifically for low quality proteins, 

values for PDCAAS overestimate the protein quality. Thus, to better meet protein requirements 

of humans, specifically for individuals consuming diets that are low or marginal in digestible 

amino acids, values for DIAAS should be used to estimate protein quality of ingredients and 

diets.
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TABLES 

Table 3.1. Analyzed nutrient composition of ingredients (as-fed basis)1 

 Ingredient2 

Item WPI WPC MPC SMP PPC SPI Soy flour Wheat 

Dry matter, % 93.22 92.93 92.83 90.59 93.70 93.79 92.23 88.22 

Crude protein, % 85.23 78.01 67.93 34.65 54.46 92.66 52.29 11.67 

Calcium, % 0.36 0.36 1.77 1.15 0.08 0.05 0.28 0.04 

Phosphorus, % 0.23 0.31 1.18 0.91 0.69 0.73 0.69 0.37 

Indispensable amino acids, % 

   Arg 1.96 2.38 2.45 1.20 4.83 6.95 3.71 0.56 

   His 1.71 1.72 2.04 1.07 1.43 2.41 1.43 0.30 

   Ile 5.95 4.94 3.61 1.80 2.31 4.38 2.35 0.39 

   Leu 9.91 9.27 6.91 3.47 4.04 7.38 4.00 0.78 

   Lys 8.64 7.83 5.50 2.90 4.11 5.69 3.30 0.39 

   Met 1.94 1.77 1.83 0.83 0.49 1.18 0.73 0.21 

   Phe 2.85 2.87 3.42 1.70 2.70 4.86 2.60 0.52 
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Table 3.1. (cont.)         

   Thr 6.58 5.39 3.02 1.50 1.95 3.35 2.00 0.34 

   Trp 1.83 1.57 1.01 0.54 0.48 1.30 0.79 0.12 

   Val 5.29 4.83 4.43 2.27 2.61 4.42 2.53 0.52 

Dispensable amino acids, % 

   Ala 4.58 4.20 2.27 1.14 2.25 3.74 2.20 0.44 

   Asp 10.22 8.79 5.29 2.68 5.99 10.56 5.84 0.62 

   Cys 2.14 1.91 0.46 0.26 0.63 1.06 0.72 0.25 

   Glu 15.97 13.62 14.55 7.37 8.62 17.10 9.20 3.06 

   Gly 1.57 1.62 1.31 0.68 2.25 3.77 2.16 0.50 

   Pro 5.35 4.50 6.69 3.33 2.17 4.65 2.52 1.03 

   Ser 4.10 3.86 3.51 1.81 2.37 4.25 2.33 0.49 

   Tyr 2.60 2.55 3.42 1.61 1.79 3.31 1.82 0.24 

1The trypsin inhibitor units in soy flour and SPI were 8.06 and 2.75 units per mg, respectively.  

2WPI = whey protein isolate; WPC = whey protein concentrate; MPC = milk protein concentrate; SMP = skim milk powder; 

PPC = pea protein concentrate; SPI = soy protein isolate.  

  



55 

 

Table 3.2. Ingredient composition of experimental diets (as-fed basis)1 

 Diet2 

Ingredient, % WPI WPC MPC SMP PPC SPI Soy flour Wheat N-free 

  WPI  21.00 - - - - - - - - 

  WPC - 23.00 - - - - - - - 

  MPC - - 40.00 - - - - - - 

  SMP - - - 50.00 - - - - - 

  PPC - - - - 25.00 - - - - 

  SPI - - - - - 21.00 - - - 

  Soy flour  - - - - - - 35.00 11.30 - 

  Wheat - - - - - - - 82.50 - 

  Soybean oil 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00 

  Solka floc - - - - - - - - 4.00 

  Monocalcium phosphate 1.60 1.60 1.60 1.60 1.60 1.60 1.60 0.80 2.40 

  Limestone 0.60 0.60 0.60 0.60 1.30 1.30 1.30 1.30 0.50 

  Sucrose 20.00 20.00 20.00 20.00 20.00 20.00 20.00 - 20.00 

  Chromic oxide 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

  Cornstarch 52.70 50.70 33.70 23.70 48.00 52.00 38.00 - 67.50 

  Magnesium oxide - - - - - - - - 0.10 

  Potassium carbonate - - - - - - - - 0.40 

  Sodium chloride 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 
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1All diets were formulated to contain approximately 17% crude protein, 0.70% calcium and 0.33% standardized total tract 

digestible phosphorus. 

2WPI = whey protein isolate; WPC = whey protein concentrate; MPC = milk protein concentrate; SMP = skim milk powder; PPC 

= pea protein concentrate; SPI = soy protein isolate.  

3The vitamin-micromineral premix provided the following quantities of vitamins and micro minerals per kilogram of complete 

diet: vitamin A as retinyl acetate, 11,136 IU; vitamin D3 as cholecalciferol, 2,208 IU; vitamin E as DL-alpha tocopheryl acetate, 66 

IU; vitamin K as menadione dimethylprimidinol bisulfite, 1.42 mg; thiamin as thiamine mononitrate, 0.24 mg; riboflavin, 6.59 mg;  

pyridoxine as pyridoxine hydrochloride, 0.24 mg; vitamin B12, 0.03 mg; D-pantothenic acid as D-calcium pantothenate, 23.5 mg; 

niacin, 44.1 mg; folic acid, 1.59 mg; biotin, 0.44 mg; Cu, 20 mg as copper sulfate and copper chloride; Fe, 126 mg as ferrous sulfate; 

I, 1.26 mg as ethylenediamine dihydriodide; Mn, 60.2 mg as manganese sulfate; Se, 0.3 mg as sodium selenite and selenium yeast; 

and Zn, 125.1 mg as zinc sulfate.  

Table 3.2. (cont.)          

  Vitamin micromineral premix3 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 
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Table 3.3. Analyzed nutrient composition of experimental diets (as-fed basis) 

 Diet1 

Item WPI WPC MPC SMP PPC SPI Soy flour Wheat N-Free 

Dry matter, % 93.22 92.93 92.83 90.59 93.70 93.79 92.23 88.22 92.41 

Crude protein, % 17.61 16.35 16.90 16.76 15.65 17.04 16.53 16.59 0.13 

Indispensable amino acids, % 

   Arg 0.39 0.49 0.58 0.55 1.23 1.27 1.13 1.00 0.01 

   His 0.38 0.41 0.52 0.51 0.41 0.49 0.48 0.46 0.02 

   Ile 1.27 1.08 0.91 0.88 0.64 0.86 0.77 0.69 0.01 

   Leu 2.09 2.07 1.71 1.65 1.10 1.42 1.28 1.22 0.02 

   Ly 1.85 1.72 1.37 1.38 1.13 1.12 1.05 0.80 0.02 

   Met 0.40 0.39 0.46 0.42 0.13 0.23 0.22 0.26 0.00 

   Phe 0.59 0.62 0.84 0.80 0.72 0.92 0.82 0.79 0.01 

   Thr 1.39 1.17 0.73 0.70 0.52 0.64 0.63 0.56 0.01 

   Tr 0.37 0.38 0.26 0.29 0.17 0.22 0.25 0.18 0.02 

   Val 1.15 1.05 1.13 1.08 0.72 0.89 0.82 0.80 0.01 
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Table 3.3. (cont.)          

   Total 9.88 9.38 8.51 8.26 6.77 8.06 7.45 6.76 0.13 

Dispensable amino acids, % 

   Ala 0.99 0.95 0.57 0.55 0.62 0.73 0.71 0.68 0.01 

   Asp 2.17 1.94 1.30 1.27 1.64 2.02 1.85 1.37 0.02 

   Cys 0.43 0.42 0.11 0.12 0.16 0.20 0.22 0.31 0.00 

   Glu 3.41 3.04 3.49 3.40 2.38 3.29 2.92 3.68 0.05 

   Gl 0.34 0.37 0.31 0.32 0.62 0.72 0.69 0.70 0.01 

   Ser 1.10 0.94 1.62 1.55 0.57 0.85 0.77 1.12 0.01 

   Tyr 0.94 0.86 0.83 0.79 0.62 0.79 0.70 0.69 0.01 

   Ala 0.46 0.48 0.74 0.70 0.43 0.54 0.54 0.51 0.01 

   Total 9.84 9.00 8.97 8.70 7.04 9.14 8.40 9.06 0.12 

Total amino 

acids, % 

19.72 18.38 17.48 16.96 13.81 17.20 15.85 15.82 0.25 

1WPI = whey protein isolate; WPC = whey protein concentrate; MPC = milk protein concentrate; SMP = skim milk powder; PPC 

= pea protein concentrate; SPI = soy protein isolate. 
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Table 3.4. Standardized ileal digestibility of amino acids in ingredients1 

 Ingredient2 Pooled SEM P-value 

Item WPI WPC MPC SMP PPC SPI Soy flour Wheat   

Indispensable amino acids, % 

   Arg 104a 101ab 102ab 98d 99cd 101bc 99cd 87e 1.00 <0.05 

   His 100a 97ab 99a 94bc 95bc 97ab 92c 85d 1.55 <0.05 

   Ile 98a 97ab 93cd 89e 91d 95bc 92d 86f 1.00 <0.05 

   Leu 99a 98a 98a 94b 92c 95b 91c 86d 0.74 <0.05 

   Lys 98a 96ab 96ab 95ab 96ab 97a 93b 77c 1.31 <0.05 

   Met 98a 97ab 97ab 96bc 90e 96c 93d 88f 0.58 <0.05 

   Phe 98a 96ab 97a 94b 92c 96ab 92c 87d 0.82 <0.05 

   Thr 94a 91abc 93a 82d 88bc 92ab 87c 80d 1.91 <0.05 

   Trp 100a 98ab 97ab 91d 87e 96bc 92cd 74f 1.31 <0.05 

   Val 97a 95ab 94bc 90d 89d 94b 91cd 83e 1.22 <0.05 

  Mean 98a 96a 97a 92b 93b 96a 93b 85c 0.90 <0.05 

Dispensable amino acids, % 
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Table 3.4. (cont.)           

   Ala 98a 96ab 96ab 89d 92cd 96abc 93bcd 79e 1.51 <0.05 

   Asp 99a 96ab 97ab 88c 93b 95ab 88c 80ab 1.63 <0.05 

   Cys 98a 95ab 85cd 73e 75e 91bc 81d 86cd 2.57 <0.05 

   Glu 98a 96abc 94bcd 90e 96ab 97a 92de 93cd 1.19 <0.05 

   Gly 117a 112a 117a 96b 98b 100b 95b 87c 3.18 <0.05 

   Se 95ab 92bc 88d 80e 91cd 96a 92bcd 89cd 1.90 <0.05 

   Tyr 99a 96bc 98ab 95cd 93d 96bc 93d 90e 0.97 <0.05 

  Mean 102a 101ab 99abc 95d 98bc 101ab 96cd 94d 1.38 <0.05 

Total amino acids 100a 98a 99a 94b 96b 99a 95b 90c 1.07 <0.05 

a-fMeans within a row lacking a common superscript letter are different (P < 0.05). 

1Standardized ileal digestibility values were calculated by correcting values for apparent ileal digestibility for the basal ileal 

endogenous losses. Endogenous losses of amino acids were calculated from pigs fed the nitrogen-free diet as follows (g/kg dry matter 

intake): arginine, 0.59; histidine, 0.20; isoleucine, 0.29; leucine, 0.49; lysine, 0.40; methionine, 0.08; phenylalanine, 0.29; threonine, 

0.49; tryptophan, 0.10; valine, 0.40; alanine, 0.62; aspartic acid, 0.72; cysteine, 0.17; glutamic acid, 0.94; glycine, 1.50; serine, 0.43; 

tyrosine, 0.23. 

2SEM = standard error of the mean; WPI = whey protein isolate; WPC = whey protein concentrate; MPC = milk protein  
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Table 3.4. (cont.) 

concentrate; SMP = skim milk powder; PPC = pea protein concentrate; SPI = soy protein isolate.   
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Table 3.5. Standardized ileal digestibility (SID) and standardized total tract digestibility (STTD) of crude protein (CP) in ingredients 

 Ingredient1 

Item WPI WPC MPC SMP PPC SPI Soy flour Wheat 

SID of CP, % 101 98 92 90 95 94 92 91 

STTD of CP, % 96 97 97 96 94 96 90 86 

SEM 2.7 0.9 3.5 3.6 1.8 0.6 3.1 4.5 

P-value 0.003 0.025 0.008 0.001 0.208 <0.001 0.168 0.022 

1SEM = standard error of the mean; WPI = whey protein isolate; WPC = whey protein concentrate; MPC = milk protein 

concentrate; SMP = skim milk powder; PPC = pea protein concentrate; SPI = soy protein isolate.   
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Table 3.6. Protein digestibility corrected amino acid (PDCAA) reference ratios for ingredients calculated according to requirement for 

2 to 5 year old child1 

 Ingredient2 

Item 

WPI WPC MPC SMP PPC SPI Soy 

flour 

Wheat 

PDCAA reference ratio, 2 to 5years3  

  His 1.03 1.13 1.53 1.56 1.29 1.32 1.30 1.17 

  Ile 2.43 2.20 1.84 1.78 1.41 1.63 1.45 1.03 

  Leu 1.72 1.75 1.49 1.46 1.05 1.16 1.05 0.87 

  Lys 1.71 1.68 1.35 1.38 1.21 1.02 0.98 0.50 

  Sulfur amino acids 1.87 1.84 1.31 1.21 0.77 0.93 1.00 1.36 

  Aromatic amino acids 0.99 1.07 1.55 1.45 1.22 1.35 1.21 0.89 

  Thr 2.22 1.98 1.27 1.22 0.98 1.02 1.02 0.74 

  Trp 1.91 1.78 1.31 1.36 0.75 1.23 1.24 0.81 

  Val 1.73 1.72 1.81 1.80 1.28 1.31 1.25 1.10 

1Values for PDCAA were calculated from the total tract digestibility of crude protein in pigs. 
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Table 3.6. (cont.) 

2WPI = whey protein isolate; WPC = whey protein concentrate; MPC = milk protein concentrate; SMP = skim milk powder; PPC = 

pea protein concentrate; SPI = soy protein isolate; AAA = aromatic amino acids (Phenylalanine + Tyrosine); SAA = sulfur amino 

acids (Methionine + Cysteine).  

3PDCAA reference ratios were calculated using the recommended amino acid scoring pattern for preschool children (2 to 5 years). 

The indispensable amino acid reference patterns are expressed as mg amino acid /g protein: His, 19; Ile, 28; Leu, 66; Lys, 58; sulfur 

amino acids, 25; aromatic amino acids, 63; Thr, 34; Trp, 11; Val, 35 (FAO, 1991).  
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Table 3.7. Protein digestibility corrected amino acid (PDCAA) reference ratios for ingredients calculated according to requirements 

for infants (less than 6 months of age), child (6 months to 3 years) and older child (3 years and above)1 

 Ingredient2 

Item WPI WPC MPC SMP PPC SPI Soy flour Wheat 

PDCAA reference ratio, 

birth to 6 months3 

        

  His 0.96 1.06 1.44 1.47 1.21 1.24 1.23 1.10 

  Ile 1.27 1.16 0.97 0.94 0.75 0.86 0.77 0.55 

  Leu 1.21 1.25 1.06 1.04 0.75 0.83 0.75 0.63 

  Lys 1.47 1.47 1.18 1.21 1.06 0.89 0.86 0.44 

  Sulfur amino acids 1.45 1.44 1.03 0.95 0.60 0.73 0.79 1.08 

  Aromatic amino acids 0.68 0.74 1.08 1.01 0.85 0.94 0.85 0.62 

  Thr 1.76 1.58 1.01 0.98 0.79 0.82 0.82 0.60 

  Trp 1.27 1.19 0.88 0.92 0.50 0.82 0.84 0.55 

  Val 1.13 1.13 1.19 1.19 0.84 0.87 0.83 0.73 
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Table 3.7. (cont.)         

PDCAA reference ratio, 

6 months to 3years4 

        

  His 1.01 1.11 1.51 1.54 1.27 1.30 1.29 1.16 

  Ile 2.19 1.99 1.67 1.62 1.28 1.47 1.32 0.94 

  Leu 1.77 1.81 1.55 1.52 1.09 1.20 1.09 0.91 

  Lys 1.78 1.77 1.43 1.47 1.28 1.08 1.04 0.53 

  Sulfur amino acids 1.78 1.76 1.25 1.16 0.74 0.89 0.97 1.32 

  Aromatic amino acids 1.23 1.35 1.94 1.83 1.53 1.69 1.53 1.13 

  Thr 2.50 2.25 1.44 1.39 1.12 1.16 1.16 0.85 

  Trp 2.53 2.39 1.76 1.83 1.00 1.65 1.68 1.09 

  Val 1.45 1.45 1.52 1.52 1.08 1.11 1.06 0.93 

PDCAA reference ratio, 

3 years and above5 

        

  His 1.26 1.39 1.88 1.93 1.59 1.62 1.61 1.45 

  Ile 2.33 2.13 1.78 1.73 1.37 1.57 1.41 1.00 
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Table 3.7. (cont.)         

  Leu 1.91 1.96 1.67 1.64 1.18 1.30 1.18 0.99 

  Lys 2.12 2.11 1.69 1.74 1.52 1.28 1.24 0.63 

  Sulfur amino acids 2.09 2.07 1.47 1.37 0.86 1.05 1.14 1.54 

  Aromatic amino acids 1.56 1.71 2.47 2.33 1.94 2.15 1.94 1.43 

  Thr 3.09 2.78 1.79 1.73 1.38 1.44 1.44 1.05 

  Trp 3.26 3.07 2.26 2.36 1.29 2.12 2.16 1.40 

  Val 1.55 1.56 1.64 1.64 1.16 1.19 1.14 1.00 

1Values for PDCAA were calculated from the total tract digestibility of crude protein in pigs. 

2WPI = whey protein isolate; WPC = whey protein concentrate; MPC = milk protein concentrate; SMP = skim milk powder; PPC = 

pea protein concentrate; SPI = soy protein isolate; AAA = aromatic amino acids (phenylalanine + tyrosine); SAA = sulfur amino 

acids (methionine + cysteine).  

3PDCAA reference ratios were calculated using the recommended amino acid scoring pattern for an infant (birth to 6 months). The 

indispensable amino acid reference patterns are expressed as mg amino acid /g protein: His, 21; Ile, 55; Leu, 96; Lys, 69; sulfur 

amino acids, 33; aromatic amino acids, 94; Thr, 44; Trp, 17; Val, 55 (FAO, 2013). 

4PDCAA reference ratios were calculated using the recommended amino acid scoring pattern for a child (6 months to 3 years). The  
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Table 3.7. (cont.)         

indispensable AA reference patterns are expressed as mg amino acid /g protein: His, 20; Ile, 32; Leu, 66; Lys, 57; sulfur amino acids, 

27; aromatic amino acids, 52; Thr, 31; Trp, 8.5; Val, 40 (FAO, 2013). 

5PDCAA reference ratios were calculated using the recommended amino acid scoring pattern for older child, adolescent, and adult. 

The indispensable AA reference patterns are expressed as mg amino acid /g protein: His, 16; Ile, 30; Leu, 61; Lys, 48; sulfur amino 

acids, 23; aromatic amino acids, 41; Thr, 25; Trp, 6.6; Val, 40 (FAO, 2013).  
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Table 3.8. Digestible indispensable amino acid (DIAA) reference ratios for ingredients calculated according to requirements for 

infants (less than 6 months of age), child (6 months to 3 years) and older child (3 years and above)1 

 Ingredient2 

Item WPI WPC MPC SMP PPC SPI Soy flour Wheat 

DIAA reference ratio, 

birth to 6 months3 

        

  His 0.95 1.02 1.41 1.38 1.18 1.20 1.20 1.04 

  Ile 1.25 1.11 0.90 0.84 0.70 0.82 0.75 0.52 

  Leu 1.20 1.21 1.04 0.98 0.71 0.79 0.73 0.60 

  Lys 1.44 1.43 1.12 1.15 1.05 0.87 0.85 0.37 

  Sulfur amino acids 1.42 1.37 0.97 0.86 0.51 0.68 0.73 1.04 

  Aromatic amino acids 0.67 0.71 1.05 0.96 0.81 0.90 0.83 0.60 

  Thr 1.65 1.43 0.94 0.81 0.72 0.76 0.76 0.53 

  Trp 1.26 1.18 0.85 0.83 0.45 0.79 0.82 0.45 

  Val 1.09 1.07 1.11 1.07 0.78 0.82 0.80 0.67 
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Table 3.8. (cont.)         

DIAA reference ratio, 6 

months to 3 years4 

        

  His 1.00 1.07 1.48 1.45 1.24 1.26 1.26 1.09 

  Ile 2.15 1.91 1.55 1.44 1.21 1.41 1.29 0.89 

  Leu 1.75 1.76 1.52 1.43 1.03 1.15 1.06 0.88 

  Lys 1.75 1.73 1.36 1.40 1.27 1.05 1.03 0.45 

  Sulfur amino acids 1.74 1.68 1.18 1.05 0.62 0.84 0.89 1.27 

  Aromatic amino acids 1.21 1.28 1.89 1.74 1.46 1.63 1.50 1.09 

  Thr 2.34 2.03 1.34 1.14 1.02 1.08 1.07 0.75 

  Trp 2.52 2.36 1.70 1.66 0.90 1.58 1.64 0.90 

  Val 1.40 1.36 1.43 1.37 0.99 1.05 1.03 0.85 

DIAA reference ratio, 3 

years and above5 

        

  His 1.25 1.33 1.85 1.81 1.55 1.57 1.57 1.37 

  Ile 2.29 2.04 1.65 1.54 1.29 1.50 1.38 0.95 
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Table 3.8. (cont.)         

  Leu 1.89 1.90 1.64 1.55 1.12 1.24 1.14 0.95 

  Lys 2.08 2.06 1.61 1.66 1.50 1.25 1.23 0.53 

  Sulfur amino acids 2.04 1.97 1.41 1.24 0.73 0.98 1.05 1.49 

  Aromatic amino acids 1.53 1.63 2.40 2.21 1.85 2.06 1.90 1.38 

  Thr 2.90 2.52 1.66 1.42 1.26 1.33 1.33 0.93 

  Trp 3.24 3.04 2.19 2.14 1.16 2.04 2.12 1.16 

  Val 1.50 1.47 1.53 1.47 1.07 1.12 1.10 0.92 

1Values for PDCAA were calculated from the total tract digestibility of CP in pigs. 

2WPI = whey protein isolate; WPC = whey protein concentrate; MPC = milk protein concentrate; SMP = skim milk powder; PPC = 

pea protein concentrate; SPI = soy protein isolate; AAA = aromatic amino acids (phenylalanine + tyrosine); SAA = sulfur amino 

acids (methionine + cysteine).  

3DIAA reference ratios and respective DIAAS were calculated using the recommended amino acid scoring pattern for an infant (birth 

to 6 months). The indispensable amino acid reference patterns are expressed as mg amino acid /g protein: His, 21; Ile, 55; Leu, 96; 

Lys, 69; sulfur amino acid, 33; aromatic amino acid, 94; Thr, 44; Trp, 17; Val, 55 (FAO, 2013). 

4DIAA reference ratios and respective DIAAS were calculated using the recommended amino acid scoring pattern for a child (6  

months to 3 years). The indispensable AA reference patterns are expressed as mg amino acid /g protein: His, 20; Ile, 32; Leu, 66; Lys, 
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Table 3.8. (cont.) 

  57; sulfur amino acid, 27; aromatic amino acid, 52; Thr, 31; Trp, 8.5; Val, 40 (FAO, 2013). 

5DIAA reference ratios and respective DIAAS were calculated using the recommended amino acid scoring pattern for older child, 

adolescent, and adult. The indispensable AA reference patterns are expressed as mg amino acid /g protein: His, 16; Ile, 30; Leu, 

61; Lys, 48; sulfur amino acid, 23; aromatic amino acid, 41; Thr, 25; Trp, 6.6; Val, 40 (FAO, 2013).  
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Table 3.9. Comparison of protein digestibility corrected amino acid scores (PDCAAS) and digestible indispensable amino acid scores 

(DIAAS) based on different requirement patterns1 

Ingredient2 

PDCAAS 19913 

PDCAAS 1991, 

untruncated 

PDCAAS 20134 DIAAS SEM P-value 

WPI 99a (AAA) 99b (AAA) 97c (His) 100a (His) 0.3 <0.05 

WPC 100b (AAA) 107a (AAA) 107a (His) 107a (His) 0.4 <0.05 

MPC 100c (Thr) 127a (Thr) 121b (SAA) 120b (SAA) 0.5 <0.05 

SMP 100d (SAA) 121a (SAA) 112b (SAA) 105c (SAA) 1.1 <0.05 

PPC 75a (Trp) 75a (Trp) 71b (SAA) 62c (SAA) 0.6 <0.05 

SPI 93a (SAA) 93a (SAA) 86b (SAA) 84c (SAA) 0.5 <0.05 

Soy flour 98a (Lys) 98a (Lys) 93b (SAA) 89c (SAA) 1.3 <0.05 

Wheat 50a (Lys) 50a (Lys) 51a (Lys) 45b (Lys) 1.3 <0.05 

a,b,c,d Means within a row lacking a common superscript letter are different (P < 0.05). 

1Values for PDCAAS were calculated from the total tract digestibility of crude protein in pigs and values for DIAAS were 

calculated from the ileal digestibility of amino acids in pigs. First limiting amino acid is in parenthesis. 

2SEM = standard error of the mean; WPI = whey protein isolate; WPC = whey protein concentrate; MPC = milk protein  

concentrate; SMP = skim milk powder; PPC = pea protein concentrate; SPI = soy protein isolate; AAA = aromatic amino acids  
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Table 3.9.  

(phenylalanine + tyrosine); SAA = sulfur amino acids (methionine + cysteine).  

3PDCAAS were calculated using the recommended amino acid scoring pattern for preschool children (2 to 5 years). The 

indispensable amino acids reference patterns are expressed as mg amino acid/g protein: histidine, 19; isoleucine, 28; leucine, 66; 

lysine, 58; sulfur amino acids, 25; aromatic amino acids, 63; threonine, 34; tryptophan, 11; valine, 35 (FAO, 1991). 

4PDCAAS and DIAAS were calculated using the recommended amino acid scoring pattern for a child (6 months to 3years). The 

indispensable amino acid reference patterns are expressed as mg amino acid/g protein: histidine, 20; isoleucine, 32; leucine, 66; lysine, 

57; sulfur amino acids, 27; aromatic amino acids, 52; threonine, 31; tryptophan, 8.5; valine, 40 (FAO, 2013). 
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Table 3.10. Comparison of protein digestibility corrected amino acid scores (PDCAAS) and digestible indispensable amino acid 

scores (DIAAS)1 

 Ingredients2 

Item WPI WPC MPC SMP PPC SPI Soy flour Wheat 

birth to 6 months3         

  DIAAS 67 (AAA4) 71 (AAA) 85 (Trp) 81 (Thr) 45 (Trp) 68 (SAA) 73 (Leu) 37 (Lys) 

  PDCAAS 66 (AAA) 72 (AAA) 85 (Trp) 88 (Trp) 49 (Trp) 71 (SAA) 72 (Leu) 42 (Lys) 

  SEM 0.30 0.48 0.51 2.4 0.42 0.68 0.83 1.2 

  P-value 0.062 0.164 0.743 0.039 <0.0001 0.026 0.642 0.017 

3 years and above4         

  DIAAS 125 (His) 133 (His) 141 (SAA) 123 (SAA) 73 (SAA) 98 (SAA) 105 (SAA) 54 (Lys) 

  PDCAAS 122 (His) 134 (His) 142 (SAA) 132 (SAA) 84 (SAA) 102 (SAA) 109 (SAA) 51 (Lys) 

  SEM 0.44 0.68 0.73 1.6 0.62 0.98 1.4 1.7 

  P-value <0.001 0.311 0.196 0.002 <0.0001 0.028 0.053 0.220 

a,b,c,d Means within a row lacking a common superscript letter are different (P < 0.05). 

1Values for PDCAAS were calculated from the total tract digestibility of crude protein in pigs and values for DIAAS were 

calculated from the ileal digestibility of amino acids in pigs. First limiting amino acid is in parenthesis. 
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Table 3.10. (cont.) 

2SEM = standard error of the mean; WPI = whey protein isolate; WPC = whey protein concentrate; MPC = milk protein 

concentrate; SMP = skim milk powder; PPC = pea protein concentrate; SPI = soy protein isolate; AAA = aromatic amino acids 

(phenylalanine + tyrosine); SAA = sulfur amino acids (methionine + cysteine).  

3PDCAAS and DIAAS were calculated using the recommended amino acid scoring pattern for an infant (birth to 6 months). The 

indispensable amino acid reference patterns are expressed as mg amino acid/g protein: histidine, 21; isoleucine, 55; leucine, 96; lysine, 

69; sulfur amino acids, 33; aromatic amino acids, 94; threonine, 44; tryptophan, 17; valine, 55 (FAO, 2013). 

4PDCAAS and DIAAS were calculated using the recommended amino acid scoring pattern for children older than 3 years, 

adolescents, and adults. The indispensable amino acid reference patterns are expressed as mg amino acid/g protein: histidine, 16; 

isoleucine, 30; leucine, 61; lysine, 48; sulfur amino acids, 23; aromatic amino acids, 41; threonine, 25; tryptophan, 6.6; valine, 40 

(FAO, 2013).
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CHAPTER 4: PREPARATION OF PORK LOIN MAY INCREASE DIGESTIBLE 

INDISPENSABLE AMINO ACID SCORES WHEN DETERMINED USING PIGS 

 

 

ABSTRACT: An experiment was conducted to characterize the amino acid concentration and 

digestible indispensable amino acid scores (DIAAS) of raw pork loin and to determine the effect 

of different preparations (i.e., roasting, frying, or grilling) on amino acid concentrations and 

DIAAS in pork loin. The DIAAS were calculated based on ileal digestibility of amino acids in 

pigs for raw pork loin, roasted pork loin, grilled pork loin, fried pork loin, and casein. Six ileal-

cannulated barrows were allotted to a 6 × 6 Latin square design with 6 diets and 6 periods during 

which ileal effluent samples were collected to determine amino acid digestibility. A N-free diet 

was formulated to determine basal endogenous losses of amino acids and crude protein (CP) and 

to enable the calculation of standardized ileal digestibility (SID) of amino acids. The remaining 

diets were formulated with each test ingredient as the sole source of amino acids. Using 

determined values for SID of amino acids for each ingredient and established reference protein 

patterns, DIAAS were calculated. For children from birth to 6 m, fried pork loin had the greatest 

(P < 0.05) DIAAS followed by grilled pork loin, roasted pork loin, raw pork loin, and casein. For 

children from 6 m to 3 y, DIAAS were greatest (P < 0.05) for grilled and fried pork loin and least 

(P < 0.05) for raw pork loin and the DIAAS of roasted pork loin was greater (P < 0.05) than that 

of casein. For DIAAS calculated for children older than 3 y, there were no differences in the 

DIAAS among grilled pork loin, fried pork loin, and casein, but these 3 ingredients had greater 

(P < 0.05) DIAAS than roasted pork loin, which in turn had a greater (P < 0.05) DIAAS than 

raw pork loin. Results indicate that prepared pork loins can be considered excellent protein 
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sources based on their DIAAS and these data make it possible to calculate DIAAS for meals 

containing commonly consumed pork loin products. Additionally, results of this research 

indicate that even for high-quality proteins, such as pork loin, correct preparation can improve 

DIAAS. 

 

INTRODUCTION 

 The Protein Digestibility Corrected Amino Acid Score (PDCAAS) has been used for 

more than 25 years to evaluate protein quality in human nutrition (FAO, 1991; WHO, 2007). 

However, this method has limitations because it is based on the total tract digestibility of CP and 

it is assumed that all amino acids have the same digestibility as CP. It is, however, recognized 

that digestibility of amino acids is most correctly determined at the end of the small intestine (the 

“ileum”) because amino acids are absorbed only from the small intestine and because hindgut 

fermentation can affect fecal amino acid excretion (Sauer and Ozimek, 1986). Therefore, ileal 

digestibility is a more accurate estimate of amino acid bioavailability than total tract digestibility 

in both humans and pigs (Stein et al., 2007; Cervantes-Pahm et al., 2014; Mathai et al., 2017). In 

addition, the digestibility of CP is not representative of the digestibility of all amino acids (Stein 

et al., 2007; Mathai et al., 2017). Instead, individual digestibility values for each amino acid need 

to be used. As a consequence, the Food and Agriculture Organization of the United Nations 

(FAO) recommends a new amino acid evaluation procedure called “Digestible Indispensable 

Amino Acid score (DIAAS)”. To calculate DIAAS, it is necessary that ileal amino acid 

digestibility values are generated and the pig has been recognized as the best animal model for 

estimating amino acid digestibility in humans using ileal digestibility (Rowan et al., 1994; 

Deglaire et al., 2009; FAO, 2013). The FAO also recommends that DIAAS be generated for all 
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proteins used in human nutrition, which will enable nutritionists to determine the quality of 

protein in meals fed to humans, thus ensuring deficiencies of amino acids are avoided. However, 

there is a lack of information about DIAAS of proteins used in human nutrition. Research in our 

laboratory has determined DIAAS in eight cereal grains (Cervantes-Pahm et al., 2014) and in 

several dairy and plant proteins (Mathai et al., 2017; Abelilla et al., 2018). Results of this 

research clearly demonstrate that cereal grains do not provide digestible amino acids in quantities 

that meet the requirement for amino acids by children. It is, therefore, necessary that additional 

sources of amino acids are provided, and pork protein is a readily available source of protein in 

many countries in the world. In the recent FAO report (FAO, 2013), it is stated that DIAAS for 

all food proteins need to be generated and specifically, there is a need to generate DIAAS for 

meat products. Therefore, research characterizing DIAAS in raw and prepared pork loin fills a 

void in our understanding of the nutritional value of proteins used in foods. Roasting, frying, or 

grilling are common ways to prepare pork loin, but limited research has been conducted to 

determine the effects of these preparation methods on the digestibility of amino acids. Therefore, 

it was the objective of this research to test the hypothesis that roasting, frying, or grilling will 

increase DIAAS in pork loin.  

MATERIALS AND METHODS 

Diets, Animals, Housing, and Experimental Design 

All animal care procedures were conducted under a research protocol approved by the 

Institutional Animal Care and Use Committee, University of Illinois, Urbana. Pork loins were 

sourced from commercial sources by the University of Illinois Meat Science Laboratory and 

divided into 4 batches (Table 4.1).  Pork loins were from pigs fed a common industry diet so the 

composition of the test loins were representative of loins purchased by consumers. One batch 
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was ground, vacuum packaged, and then frozen to provide raw pork loins, whereas the remaining 

3 batches were roasted, grilled, or fried. Pork loins were either roasted using a commercial 

smokehouse (Middleby Corporation, Alkar Smoker, Elgin, IL) fried using a griddle and a small 

amount of vegetable oil to simulate in-home fried pork chops, or grilled (Farberware® OPEN 

HEARTH® Grill, Garden City, NY). For all cooking methods, pork loins were cooked to an 

internal temperature of 145oF, which is the United States Department of Agriculture 

recommended temperature to ensure food safety, and following preparation, loins were ground, 

vacuum packaged, and frozen until use.  

Four diets were based on each of the 4 batches of pork loin (i.e., raw, roasted, fried, or 

grilled) as the sole source of amino acids. A control diet was also formulated containing casein 

as the sole proteinaceous ingredient. All diets contained 10% CP on a dry matter (DM) basis 

(Tables 4.2 and 4.3). The last diet was a N-free diet that was used to estimate basal endogenous 

losses of CP and amino acids, which was necessary for the calculation of DIAAS. The N-free 

and casein diets were fed as-is. However, pork ingredients were combined daily with sufficient 

N-free diet to provide 10% CP on a DM basis. Cornstarch, sucrose, soybean oil, vitamins, and 

minerals were also included in the diets to ensure that all nutrient requirements of growing pigs 

were met (NRC, 2012). All diets were provided in meal form and titanium dioxide was used as 

an indigestible marker. 

Six gilts (initial BW: 26.16 ± 4.68 kg) were surgically fitted with a T-cannula in the distal 

ileum (Stein et al., 1998). After surgery, pigs were housed individually in pens (2 x 3m) that 

were equipped with a feeder and a nipple drinker and concrete half-slatted floor. Pigs were then 

allotted to a 6 × 6 Latin square design with 6 diets and 6 periods comprising the rows and 

columns of the square. Pigs were fed their respective diets in quantities equivalent to 4% of their 
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total BW. The daily feed allotment was divided into 2 meals that were provided every day at 

0800 and 1600 h. Water was available at all times and each period lasted 7 d. 

Data Recording and Sample Collection 

Pig weights were recorded at the beginning of each period and at the conclusion of the 

experiment. The amount of feed supplied each day was recorded, as well.  The initial 5 days of 

each period were considered an adaptation period to the diet. Ileal digesta were collected for 8 h 

(from 0800 to 1600 h) on d 6 and 7 using standard operating procedures (Stein et al., 1998).  

Briefly, cannulas were opened and cleaned, a plastic bag was attached to the cannula barrel and 

digesta flowing into the bag were collected. Bags were removed whenever they were filled with 

digesta or at least once every 30 min, and immediately frozen at – 20oC to prevent bacterial 

degradation of the amino acids in the digesta. Individual pig weights recorded at the conclusion 

of each period were used to calculate the feed provision for the subsequent period.    

Chemical Analysis 

Ileal digesta samples were thawed, mixed within animal and diet, and a sub-sample was 

lyophilized and ground through a 1-mm screen in a Wiley Mill (Model 4; Thomas Scientific, 

Swedesboro, NJ). Diets and all ileal digesta samples were analyzed for dry matter (DM; Method 

927.05; AOAC International, 2007) and CP (Method 990.03; AOAC International, 2007) using a 

LECO FP628 analyzer (LECO Corp., Saint Joseph, MI) at the Monogastric Nutrition Laboratory 

at the University of Illinois. Pork loin samples were analyzed for CP by measuring N 

concentration using the Kjeldahl method (method 976.05; AOAC Int., 2007) due to their high 

moisture contents. Samples were analyzed in duplicate, but analyses were repeated if the 

analyzed values were more than 5% apart. All samples were also analyzed for amino acids 



86 

 

[Method 982.30 E (a, b, c); AOAC International, 2007], and samples of diets and ileal digesta 

were analyzed for Ti (Myers et al., 2004).  

Calculations 

 Apparent ileal digestibility values for amino acids in the protein sources were calculated 

using equation [1] (Stein et al., 2007): 

AID (%) = [1 –[(AAd/AAf) × (Tif/Tid)] × 100    [1] 

where AID is the apparent ileal digestibility of an amino acid (%), AAd is the concentration of 

that amino acid in the ileal digesta DM, AAf is the amino acid concentration of that amino acid 

in the feed DM, Tif is the titanium concentration in the feed DM, and Tid is the titanium 

concentration in the ileal digesta DM.  

 The basal endogenous flow to the distal ileum of each amino acid was determined based 

on the flow obtained after feeding the N-free diet using equation [2] (Stein et al., 2007): 

IAAend = [AAd × (Tif/Tid)]    [2] 

where IAAend is the basal endogenous loss of an amino acid (mg per kg DM intake).  The basal 

endogenous loss of CP was determined using the same equation.  

 By correcting the AID for the IAAend of each amino acid, standardized ileal amino acid 

digestibility values were calculated using equation [3] (Stein et al., 2007): 

SID = [(AID + IAAend)/AAf]    [3] 

where SID is the standardized ileal digestibility value (%).  

The concentration of SID amino acids (g/kg) in each ingredient was calculated by 

multiplying the SID value (%) for each amino acid by the concentration (g/kg) of that amino acid 

in the ingredient, and this value was then divided by the concentration of CP in the ingredient to 

calculate the quantity of digestible indispensable amino acid (mg) in 1 g protein (Cervantes-
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Pahm et al., 2014; Mathai et al., 2017). The digestible indispensable amino acid reference ratios 

were calculated for each ingredient using the following equation [4] (FAO, 2013):  

Digestible indispensable amino acid reference ratio = digestible indispensable amino acid 

content in 1 g protein of food (mg) / mg of the same dietary indispensable amino acid in 1g of 

reference protein. [4] 

 The reference proteins were based on FAO (2013) definitions and separate ratios were 

calculated using the reference protein for infants less than 6 months old, children from 6 months 

old to 36 months old, and children older than 36 months old, adolescents, and adults.  The 

DIAAS were then calculated using the following equation [5] (FAO, 2013):  

DIAAS (%) = 100 × lowest value of digestible indispensable amino acid reference ratio.

 [5] 

Statistical Analyses 

Normality of data was verified and outliers were identified using the UNIVARIATE and 

BOXPLOT procedures, respectively (SAS Inst. Inc., Cary, NC). Data were analyzed using the 

MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with the pig as the experimental unit. 

The statistical model to determine differences in SID of amino acid values among ingredients 

included diet as the main effect and pig and period as random effects. Treatment means were 

calculated using the LSMEANS statement, and when significantly different, means were 

separated using the PDIFF option of the MIXED procedure. Significance was considered at P < 

0.05. 
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RESULTS 

 All pigs remained healthy throughout the experiment and readily consumed their diets. 

For indispensable amino acids, the AID and SID of Ile and Thr were less (P < 0.05) in casein 

than in any of the pork products (Tables 4.4 and 4.5). The AID and SID of His, Ile, Leu, Lys, 

Met, Phe, Thr, and Val were less (P < 0.05) in fried pork loin when compared with the other 

pork products. The SID of His and Thr were greater (P < 0.05) in raw pork loin than in any of 

the other ingredients.  

For DIAAS calculated for children from birth to 6 m, fried pork loin had the greatest (P < 

0.05) values followed by grilled pork loin, roasted pork loin, raw pork loin, and casein (Table 

4.6). For DIAAS calculated for children from 6 m to 3 y, values were greatest (P < 0.05) for 

grilled pork loin and fried pork loin and least (P < 0.05) for raw pork loin. The DIAAS of roasted 

pork loin was greater (P < 0.05) than that of casein. For DIAAS calculated for children older 

than 3 y, there were no differences between grilled pork loin, fried pork loin, or casein, but these 

3 ingredients had greater (P < 0.05) DIAAS than roasted pork loin, which in turn had a greater (P 

< 0.05) DIAAS than raw pork loin. 

 For DIAAS calculated for infants, the first limiting amino acid in raw pork loin was His, 

whereas for all other ingredients the first limiting amino acid was Trp. However, for children 

from 6 m to 3 y, His was the first-limiting amino acid in all pork products and Trp was the first-

limiting amino acid in casein. For children older than 3 y, His was the first limiting amino acid in 

raw pork loin, Leu was the first limiting amino acid in fried, grilled, or roasted pork loin, and Trp 

was the first-limiting amino acid in casein.  



89 

 

DISCUSSION 

 Due to the importance of amino acids nutrition in humans, it is imperative that 

knowledge about amino acid digestibility is generated because that will allow formulation of 

diets that can alleviate amino acid malnutrition specifically in vulnerable groups such as children 

and lactating women (WHO, 2007; Pillai and Kurpad, 2012; FAO, 2013). To accomplish this, it 

is necessary to prepare meals that provide all amino acids in the required quantities, but that is 

not possible unless values for DIAAS of the individual food proteins are known. The first step in 

overcoming amino acid malnutrition in humans, therefore, is to generate DIAAS in food 

proteins.  

Consumption of meat is increasing in the United States of America, in Europe, and in 

other countries in the developed world (Daniel et al., 2011). Production of pork is increasing 

globally, and global production reached record levels in 2017 (FAO, 2017). Therefore, because 

of the widespread production and consumption of pork, it is critical to understand its nutritional 

quality. As the developing world demands more animal protein, pork’s role in furnishing 

essential amino acids in the diet will increase (Bindari et al., 2017). As a consequence, it is 

imperative that the protein quality of pork is quantified. Additionally, with the DIAAS 

determined in this experiment, it is possible to calculate the combined value of cereal grains and 

pork products as a complete source of amino acids in the diet (Rutherfurd et al., 2015). This 

concept is important as there is increasing evidence that meat products, when available, often 

supplant cereal grains to provide a balanced diet (Daniel et al., 2011). 

 The relatively low DIAAS of all ingredients when calculated for infants is likely of minor 

importance because pork products are usually not consumed by infants (Bindari et al., 2017). 

However, the high requirement for Trp in the reference protein for infants combined with the 
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relatively low concentration of Trp in the ingredients used in this experiment is the reason for the 

low DIAAS calculated for infants. This observation was also made in hydrolyzed pork samples 

(Bindari et al., 2017). The sharp drop in the Trp requirement for children from 6 m to 3 y 

compared with infants, is reflected by large increases in the DIAAS of all proteins and His was 

the first limiting amino acid in raw pork loin.  Nonetheless, based on this requirement pattern, 

both raw pork loin and casein are considered “good” sources of protein and roasted, grilled, and 

fried pork loin all qualify as “excellent” sources of protein based on the recommendations made 

by the FAO (2013). For children that are 3 y and older, raw pork loin also qualifies as a “good” 

source of protein, whereas all other protein sources qualify as “excellent” sources of protein 

(FAO, 2013). The relatively lower scores of raw pork loin are of minor importance, however, 

because pork is rarely consumed raw, and some form of heating is involved in most preparations 

of pork before consumption.  

 Values for DIAAS represent concentrations of digestible amino acids weighed against 

human amino acid requirements, and therefore specifically indicate a protein’s capacity to meet 

amino acid requirements, but do not necessarily directly reflect digestibility of amino acids. 

However, if protein quality is determined by digestibility of amino acids, pork loin is an 

exceptionally high quality protein. Indeed, all pork loin products used in this experiment had SID 

values of greater than 95% for every indispensable and dispensable amino acids. Therefore, the 

relative bioavailability of amino acids in pork loin products is very high. 

 Results of this experiment also offer the ability to quantify effects that cooking may have 

on amino acid digestibility. Cooking methodology varies across cultures and cooking may alter 

the availability of amino acids in ingredients, particularly via Maillard reactions (Ramadan, 

1986; Almeida et al., 2013; Rutherfurd et al., 2015). Although cooking often can have a negative 
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effect on amino acid concentration and digestibility of foods, data from this experiment 

demonstrate that cooking may also positively impact protein quality as demonstrated by the fact 

that DIAAS for cooked pork loins were greater than for raw pork loin, regardless of the reference 

protein used for calculation. The lack of significant concentrations of reducing sugars in pork 

likely prevents the Maillard reaction from occurring, and therefore reduces the risk of negative 

effects on amino acid concentration and digestibility from cooking. However, highly processed 

pork and bovine muscle hydrosylates that were exposed to very high temperatures have very low 

DIAAS (Bindari et al., 2017) indicating that heat damage other than Maillard reactions may 

occur at high temperatures. Regardless of cooking preparation choice, results of this experiment 

indicate that pork loin can serve in some cases as the sole protein source in a diet fed to young 

children and adults, and in any case can be used to complement an otherwise amino acid-

deficient diet (Rutherfurd et al., 2015). 

 Values for the AID and SID of amino acids in casein in agreement with reported values 

(Libao-Mercado et al., 2006; Almeida et al., 2013). The low level of Trp in casein is the reason 

for the low DIAAS in casein for infants and children up to 36 m. However, for children 3 y and 

older, the decrease in the Trp requirement resulted in casein having a greater DIAAS than 

roasted pork loin and raw pork loin, and a DIAAS equivalent to grilled pork loin and fried pork 

loin. Although casein is a high-quality protein, casein does not represent the complete protein 

profile of whole milk because casein is what remains after the separation of the whey fraction 

from milk, and thus represents only a portion of the total amino acid profile of a whole-milk-

based product. However, in studies where DIAAS of cooked pork loins are compared with those 

previously determined in whole milk proteins, they are of similarly high value (Rutherfurd et al., 

2015; Mathai et al., 2017). 
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CONCLUSION 

Results of the present research and our previously published data for cereal grains make it 

possible to calculate DIAAS for a meal rather than for individual food proteins. Additionally, 

results of this research highlight the differences among cooking procedures on protein quality, 

and indicates that roasting, grilling, or frying of pork loin increases the quality of protein 

compared with raw pork loin. Results also indicate that DIAAS values for roasted, grilled, or 

fried pork loin generally are not different from values obtained from casein. 
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TABLES 

Table 4.1. Analyzed nutrient composition of ingredients1 

 Ingredient 

Item Raw pork loin Roasted pork loin Grilled pork loin Fried pork loin Casein 

DM, % 61.43 66.69 68.11 66.70 91.25 

CP, % 21.53 28.15 29.08 33.92 90.22 

Indispensable amino acids, % 

   Arg 2.96 4.00 4.62 4.62 3.99 

   His 1.09 1.81 1.88 1.99 2.84 

   Ile 3.30 3.96 4.02 4.12 5.28 

   Leu 5.01 6.06 6.23 6.51 7.91 

   Lys 4.10 5.86 6.30 6.82 6.63 

   Met 1.38 1.95 2.03 2.11 2.38 

   Phe 2.59 2.98 3.14 3.22 5.15 

   Thr 2.30 3.42 3.45 3.52 4.25 

   Trp 0.65 0.85 0.87 1.00 0.84 

   Val 3.84 4.66 4.58 4.57 6.76 

Dispensable amino acids, % 
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Table 4.1. (cont.)      

   Ala 4.35 4.87 5.09 4.89 3.80 

   Asp 4.75 7.62 7.46 7.83 7.06 

   Cys 0.62 0.93 0.88 0.91 0.55 

   Glu 10.42 11.37 11.36 11.72 19.18 

   Gly 3.66 4.29 4.23 4.21 1.99 

   Pro 2.70 3.90 3.64 3.81 11.91 

   Ser 1.63 2.65 2.70 2.77 6.05 

   Tyr 2.87 2.19 2.58 2.77 5.02 

 1Amino acid concentrations expressed on a DM basis.  
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Table 4.2. Ingredient composition of experimental diets (as-is basis) 

 Diet 

Ingredient, % Raw pork loin 
Roasted pork 

loin 

Grilled pork 

loin 

Fried pork 

loin 
Casein N-free 

  Raw pork loin  31.71 - - - - - 

  Roasted pork loin - 26.33 - - - - 

  Grilled pork loin - - 26.02 - - - 

  Fried pork loin - - - 21.85 - - 

  Casein - - - - 11.40 - 

  Soybean oil 3.41 3.68 3.70 3.91 55.40 5.00 

  Solka floc 2.73 2.95 2.96 3.13 4.00 4.00 

  Dicalcium phosphate 1.64 1.77 1.78 1.88 1.90 2.40 

  Limestone 0.34 0.37 0.37 0.39 0.70 0.50 

  Sucrose 13.66 14.73 14.80 15.63 20.00 20.00 

  Titanium dioxide 0.27 0.29 0.30 0.31 0.40 0.40 

  Cornstarch 45.41 48.99 49.20 51.97 55.40 66.50 

  Magnesium oxide 0.07 0.07 0.07 0.08 0.10 0.10 

  Potassium carbonate 0.27 0.29 0.30 0.31 0.40 0.40 

  Sodium chloride 0.27 0.29 0.30 0.31 0.40 0.40 

  Vitamin mineral premix1 0.20 0.22 0.22 0.23 0.30 0.30 

 1The vitamin-micromineral premix provided the following quantities of vitamins and micro minerals per kilogram of complete  
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Table 4.2. (cont.) 

diet: vitamin A as retinyl acetate, 11,136 IU; vitamin D3 as cholecalciferol, 2,208 IU; vitamin E as DL-alpha tocopheryl acetate, 66 

IU; vitamin K as menadione dimethylprimidinol bisulfite, 1.42 mg; thiamin as thiamine mononitrate, 0.24 mg; riboflavin, 6.59 mg;  

pyridoxine as pyridoxine hydrochloride, 0.24 mg; vitamin B12, 0.03 mg; D-pantothenic acid as D-calcium pantothenate, 23.5 mg; 

niacin, 44.1 mg; folic acid, 1.59 mg; biotin, 0.44 mg; Cu, 20 mg as copper sulfate and copper chloride; Fe, 126 mg as ferrous sulfate; 

I, 1.26 mg as ethylenediamine dihydriodide; Mn, 60.2 mg as manganese sulfate; Se, 0.3 mg as sodium selenite and selenium yeast; 

and Zn, 125.1  mg as zinc sulfate. 
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Table 4.3. Analyzed nutrient composition of experimental diets1 

 Diet 

Item Raw pork loin Roasted pork loin Grilled pork loin Fried pork loin Casein 

DM, % 79.76 83.93 84.58 85.24 92.39 

CP, % 10.00 10.00 10.00 10.00 10.14 

Indispensable amino acids, g/kg DM basis 

   Arg 10.00 10.79 11.83 9.99 4.15 

   His 3.70 4.89 4.80 4.30 2.95 

   Ile 11.14 10.67 10.27 8.91 5.49 

   Leu 16.92 16.33 15.91 14.09 8.23 

   Lys 13.81 15.80 16.10 14.77 6.90 

   Met 4.65 5.25 5.16 4.56 2.47 

   Phe 8.72 8.03 8.02 6.98 5.36 

   Thr 7.73 9.20 8.83 7.62 4.42 

   Trp 2.20 2.29 2.22 2.19 0.88 

   Val 12.97 12.57 11.69 9.88 7.04 

   Total 91.84 95.82 94.85 83.29 47.90 

Dispensable amino acids, g/kg DM basis 
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Table 4.3. (cont.)      

   Ala 14.65 13.13 13.02 10.58 3.95 

   Asp 16.01 20.55 19.05 16.93 7.35 

   Cys 2.09 2.52 2.25 1.98 0.57 

   Glu 35.13 30.66 29.04 25.37 19.95 

   Gly 12.35 11.58 10.80 9.12 2.08 

   Pro 9.12 10.49 9.30 8.25 12.40 

   Ser 5.49 7.15 6.91 6.00 6.30 

   Tyr 9.63 5.89 6.61 6.00 5.23 

   Total 104.48 18.96 96.98 84.23 57.81 

Total amino acids 
196.31 197.79 191.83 167.52 105.71 

1Both CP and DM reflect values of diet calculated as they were fed to the animals. 
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Table 4.4. Apparent ileal digestibility (AID) of amino acids in ingredients 

 Ingredients   

Item 
Raw pork loin 

Roasted pork 

loin 
Grilled pork loin Fried pork loin Casein 

Pooled 

SEM 

P-value 

Indispensable amino acids, % 

  Arg 95.02a 95.68a 94.31a 91.36a 76.20b 2.55 <0.05 

  His 95.07a 94.28a 94.12a 89.42c 90.88b 0.76 <0.05 

  Ile 97.24a 96.19a 95.98a 93.47b 88.86c 0.67 <0.05 

  Leu 97.20a 96.28a 96.14a 93.79b 90.79c 0.58 <0.05 

  Lys 97.24a 96.78a 97.02a 95.22b 92.41c 0.49 <0.05 

  Met 98.20a 97.69a 97.67a 96.23b 95.15c 0.32 <0.05 

  Phe 96.53a 95.23b 95.50ab 92.86c 93.39d 0.51 <0.05 

  Thr 94.01a 93.80a 93.50a 89.77b 79.06c 0.69 <0.05 

  Trp 94.68a 94.00ab 93.46ab 91.39b 81.97c 1.02 <0.05 

  Val 96.64a 95.72a 95.27a 92.38b 89.62c 0.77 <0.05 

  Mean 96.42a 95.76a 95.59a 92.99b 88.82c 0.70 <0.05 

Dispensable amino acids, % 

  Ala 96.34a 95.62a 95.00a 91.85b 79.45c 1.40 <0.05 

  Asp 95.54a 94.87a 95.13a 91.70b 86.37c 0.80 <0.05 

  Cys 89.75a 88.26a 88.90a 85.75a 49.49b 4.61 <0.05 

  Glu 97.84a 96.68a 96.18a 93.94b 90.55c 0.66 <0.05 

  Gly 90.35a 91.55a 85.94a 81.14a -6.63b 9.1 <0.05 
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Table 4.4. (cont.)        

  Pro 71.15a 75.56a 65.90a 38.65b 39.38b 15.55 <0.05 

  Ser 93.21a 93.67a 92.85a 89.07b 84.98c 1.30 <0.05 

  Tyr 97.78a 95.39b 95.62b 92.74c 94.79b 0.43 <0.05 

  Mean 93.57a 93.45a 90.99ab 85.67b 73.45c 2.97 <0.05 

Total amino 

acids 

94.91a 94.62a 93.22a 89.35b 80.40c 1.84 <0.05 

a-gMeans within a row lacking a common superscript letter differ (P < 0.05). 

1Data are least square means of 6 observations per treatment. 
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Table 4.5. Standardized ileal digestibility (SID) of amino acids in ingredients1,2 

 Ingredients   

Item 

Raw pork 

loin 

Roasted pork 

loin 
Grilled pork loin Fried pork loin Casein 

Pooled 

SEM 

P-value 

Indispensable amino acids, % 

  Arg 104.28a 104.27a 102.14a 100.62ab 96.79b 2.55 <0.05 

  His 100.49a 98.38b 98.29b 94.08c 97.17b 0.76 <0.05 

  Ile 100.48a 99.57a 99.49a 97.51b 94.92c 0.67 <0.05 

  Leu 100.47a 99.67a 99.62a 97.71b 97.00b 0.58 <0.05 

  Lys 100.12a 99.30a 99.49a 97.92b 97.74b 0.49 <0.05 

  Met 99.94a 99.23a 99.24a 98.00b 98.18b 0.32 <0.05 

  Phe 100.22a 99.24b 99.51ab 97.47c 98.94b 0.51 <0.05 

  Thr 101.92a 100.44b 100.42b 97.79c 91.79d 0.69 <0.05 

  Trp 100.19a 99.30ab 98.91ab 96.92bc 94.68c 1.02 <0.05 

  Val 100.50a 99.65a 99.50a 97.39b 96.11b 0.77 <0.05 

  Mean 100.85a 100.01a 99.87a 97.87b 96.67b 0.70 <0.05 

Dispensable amino acids, % 

  Ala 101.23a 101.08a 100.51a 98.63ab 96.22b 1.40 <0.05 

  Asp 101.07a 99.17bc 99.77ab 96.92d 97.50cd 0.80 <0.05 

  Cys 101.81 98.50 99.39 95.09 89.10 4.75 0.212 

  Glu 100.72a 99.99a 99.67a 97.94b 95.25c 0.66 <0.05 

  Gly 108.03 110.40 106.14 105.06 90.44 9.09 0.330 
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Table 4.5. (cont.)        

  Pro 152.15a 146.98ab 145.34ab 128.17b 94.45c 15.55 <0.05 

  Ser 103.39a 101.49a 100.94ab 98.42b 93.19c 1.30 <0.05 

  Tyr 100.28a 99.47ab 99.26b 96.76c 99.05b 0.43 <0.05 

  Mean 106.14a 106.33a 104.53a 101.26a 94.43b 2.96 <0.05 

Total amino acids 103.67a 103.31ab 102.18ab 99.61b 95.43c 1.84 <0.05 

a-fMeans within a row lacking a common superscript letter differ (P < 0.05).  

1Data are least square means of 6 observations per treatment. 

2Standardized ileal digestibility values were calculated by correcting values for apparent ileal digestibility for the basal ileal 

endogenous losses. Endogenous losses (g/kg of DMI) amino acids were as follows: Arg, 0.93; His, 0.20; Ile, 0.36; Leu, 0.55; Lys, 0.40; 

Met, 0.08; Phe, 0.32; Thr, 0.61; Trp, 0.12; Val, 0.49; Ala, 0.72; Asp, 0.88; Cys, 0.24; Glu, 1.01; Gly, 2.18; Ser, 0.56; Tyr, 0.24.  
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Table 4.6. Comparison of digestible indispensable amino acid score (DIAAS) values1 

 Ingredients 

Item 

Raw pork 

loin 

Roasted pork 

loin 

Grilled pork 

loin 

Fried pork 

loin 
Casein SEM P-value 

DIAAS        

  birth to 6 m2 55d (His) 60c (Trp) 61b (Trp) 69a (Trp) 49e (Trp) 0.53 <0.05 

  6 m to 3 y3 78d (His) 107b (His) 112a (His) 112a (His) 97c (Trp) 1.08 <0.05 

  3 y and older4 97c (His) 119b (Leu) 123a (Leu) 126a (Leu) 125a (Trp) 1.20 <0.05 

a-fMeans within a row lacking a common superscript letter differ (P < 0.05). 

1First-limiting amino acid is in parantheses. 

2DIAAS values were calculated using the recommended amino acid scoring pattern for an infant (birth to 6 months). The 

indispensable amino acid reference patterns are expressed as mg amino acid /g protein: His, 21; Ile, 55; Leu, 96; Lys, 69; Sulfur amino 

acids, 33; Aromatic amino acids, 94; Thr, 44; Trp, 17; Val, 55 (FAO, 2013). 

3DIAAS values were calculated using the recommended amino acid scoring pattern for a child (6m to 3y). The indispensable 

amino acid reference patterns are expressed as mg amino acid /g protein: His, 20; Ile, 32; Leu, 66; Lys, 57; Sulphur amino acids, 27; 

Aromatic amino acids, 52; Thr, 31; Trp, 8.5; Val, 40 (FAO, 2013). 

4DIAAS values were calculated using the recommended amino acid scoring pattern for older child, adolescent, and adult. The 

indispensable amino acid reference patterns are expressed as mg amino acid /g protein: His, 16; Ile, 30; Leu, 61; Lys, 48; Sulphur 

amino acids, 23; Aromatic amino acids, 41; Thr, 25; Trp, 6.6; Val, 40 (FAO, 2013). 



104 

 

 

LITERATURE CITED 

FAO. 1991. Protein quality evaluation. Report of a joint FAO/WHO expert consultation. FAO 

food and nutrition paper 51. Food and Agriculture Organization of the United Nations. 

Bethesda, 1991.  

Sauer, W.C. and L. Ozimek. 1986. Digestibility of amino acids in swine: Results and their 

practical applications. A review. Livest. Prod. Sci.15:367-388. doi:10.1016/0301-

6226(86)90076-X 

Stein, H. H., M. F. Fuller, P. J. Moughan, B. Sève, R. Mosenthin, A. J. M. Jansman, J. A. 

Fernández, and C. F. M. de Lange. 2007. Definition of apparent, true, and standardized ileal 

digestibility of amino acids in pigs. Livest. Sci. 109:282-285. 

doi:10.1016/j.livsci.2007.01.019 

Cervantes-Pahm, S. K., Y. Liu, and H. H. Stein. 2014. Digestible indispensable amino acid score 

and digestible amino acids in eight cereal grains. Br. J. Nutr. 111:1663-1672. 

doi:10.1017/s0007114513004273 

Schaafsma, G. 2012. Advantages and limitations of the protein digestibility-corrected amino acid 

score (PDCAAS) as a method for evaluating protein quality in human diets. Br. J. Nutr. 

108:S333-S336. doi:10.1017/S0007114512002541 

Gilani, G. S. 2012. Background on international activities on protein quality assessment of foods. 

Br. J. Nutr. 108:S168-S182. doi:10.1017/S0007114512002383 

Rutherfurd, S. M., A. C. Fanning, B. J. Miller, and P. J. Moughan. 2015. Protein digestibility-

corrected amino acid scores and digestible indispensable amino acid scores differentially 

describe protein quality in growing male rats. J. Nutr. 145:372-379. 

doi:10.3945/jn.114.195438 



105 

 

 

WHO. 2007. Protein and amino acid requirements in human nutrition. Report of a Joint 

WHO/FAO/UNU Expert Consultation. WHO Technical Report Series 935. World Health 

Organization. Geneva, 2007  

FAO. 2013. Dietary protein quality evaluation in human nutrition. Report of an FAO Expert 

Consultation. FAO food and nutrition paper 92. Food and Agriculture Organization of the 

United Nations. Rome, 2013.  

Rowan A.M., P. J. Moughan, M. N. Wilson, K. Maher, and C. Tasman-Jones. 1994. Comparison 

of the ileal and faecal digestibility of dietary amino acids in adult humans and evaluation 

of the pig as a model animal for digestion studies in man. Br. J. Nutr. 71: 29-42. 

doi:10.1079/BJN19940108 

Deglaire A., C. Bos, D. Tomé, and P. J. Moughan. 2009. Ileal digestibility of dietary protein in 

the growing pig and adult human. Br. J. Nutr. 102:1752-1759. 

doi:10.1017/S0007114509991267 

Stein, H. H. , C. Pedersen, A. R. Wirt, R. A. Bohlke. 2005. Additivity of values for apparent and 

standardized ileal digestibility of amino acids in mixed diets fed to growing pigs. J. 

Anim. Sci. 83:2387-2395. doi:10.2527/2005.83102387x 

NRC. 2012. Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC. 

doi:10.17226/13298   

Stein, H. H., C. F. Shipley, and R. A. Easter. 1998. Technical note: A technique for inserting a T-

cannula into the distal ileum of pregnant sows. J. Anim. Sci. 76:1443-1436. 

doi:10.2527/1998.7651433x 

AOAC Int. 2007. Official Methods of Analysis. 18th ed. Rev. 2. W. Howitz, and G. W. Latimer 

Jr., AOAC Int., Gaithersburg, MD. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Deglaire%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bos%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tom%C3%A9%20D%22%5BAuthor%5D


106 

 

 

Rojas, O. J. and H. H. Stein. 2013. Concentration of digestible and metabolizable energy and 

digestibility of amino acids in chicken meal, poultry byproduct meal, hydrolyzed porcine 

intestines, a spent hen-soybean meal mixture, and conventional soybean meal fed to 

weanling pigs. J. Anim. Sci. 91:3220-3230. doi:10.2527/jas.2013-6269 

Schaafsma, G. 2000. The protein digestibility-corrected amino acid score. J. Nutr. 130:1865S-

1867S. doi:10.1093/jn/130.7.1865S 

Schönfeldt H. C., and N. Hall. 2012. Dietary protein quality and malnutrition in Africa. Br. J. 

Nutr. 108:S69-S76. doi:10.1017/S0007114512002553 

Swaminathan S., M. Vaz, and A. V. Kurpad. 2012. Protein intakes in India. Br. J. Nutr. 108: 

S50-S68. doi:10.1017/S0007114512002413 

Gilani G. S., and E. Sepehr. 2003. Protein digestibility and quality in products containing 

antinutritional factors are adversely affected by old age in rats. J. Nutr. 133:220-225. 

doi:10.1093/jn/133.1.220 

James L.J., L. Mattin, P. Aldiss, R. Adebishi, and R. M. Hobson. 2014. Effect of whey protein 

isolate on rehydration after exercise. Amino Acids 46:1217-1224. doi:10.1007/s00726-

014-1680-8 

McAllan L., P. Skuse, P. D. Cotter, P. O’Connor. J. F. Cryan, R. P. Ross, G. Fitzgerald, H. M. 

Roche, and K. N. Nilaweera.  2014. Protein quality and the protein to carbohydrate ratio 

within a high fat diet influences energy balance and the gut microbiota in C57BL/6J 

mice. PLoS One 2:1-13. doi:10.1371/journal.pone.0088904 

Stanstrup J., S. S. Schou, J. Holmer-Jensen, K. Hermansen, and L. O. Dragsted. 2014. Whey 

protein delays gastric emptying and suppresses plasma fatty acids and their metabolites 



107 

 

 

compared to casein, gluten and fish protein. J. Proteome Res. 13:2396-2408. 

doi:10.1021/pr401214w 

Stein H. H., N. L. Trottier, C. Bellaver, R. A. Easter. 1999. The effect of feeding level and 

physiological status on total flow and amino acid composition of endogenous protein at 

the distal ileum in swine. J. Anim. Sci. 77:1180-1187. doi:10.2527/1999.7751180x 

Knabe D.A., D. C. LaRue, E. J. Gregg, G. M. Martinez, and T. D. Tanksley Jr. 1989. Apparent 

digestibility of nitrogen and amino acids in protein feedstuffs by growing pigs. J. Anim. 

Sci. 67:441-458. doi:10.2527/jas1989.672441x 

Hendriks W.H., J. van Baal, and G. Bosch. 2012. Ileal and faecal protein digestibility 

measurement in humans and other non-ruminants - a comparative species view. Br. J. 

Nutr. 108:S247-S257. doi:10.1017/S0007114512002395 

Boye J., R. Wijesinha-Bettoni, and B. Burlingame. 2012. Protein quality evaluation twenty years 

after the introduction of the protein digestibility corrected amino acid score method. Br. J. 

Nutr. 108:S183-S211. doi:10.1017/S0007114512002309 

Sarwar G. 1997. The protein digestibility-corrected amino acid score method overestimates 

quality of proteins containing antinutritional factors and of poorly digestible proteins 

supplemented with limiting amino acids in rats. J. Nutr. 127:758-764. 

doi:10.1093/jn/127.5.758 

Gilani G. S., K. A. Cockell, and E. Sepehr. 2005. Effects of antinutritional factors on protein 

digestibility and amino acid availability in foods. J. AOAC Intl. 88:967-987. 



108 

 

 

CHAPTER 5: DIGESTIBLE INDISPENSABLE AMINO ACID SCORES (DIAAS) FOR 

VARIOUS FOOD PROTEINS AND ASSESSMENT OF INTRA-EXPERIMENT 

VARIATION OF DIAAS 

 

ABSTRACT: An experiment was conducted to test the hypothesis that if 10 different foods that 

are known to have different protein values are fed to ileal-cannulated pigs, calculated values for 

digestible indispensable amino acid scores (DIAAS) will be different. The second hypothesis 

was to confirm that DIAAS values calculated from one group of pigs are identical to values 

calculated from a different group of pigs fed the same diets. The 10 ingredients included: wheat 

bread, whey protein isolate, zein, sorghum flour, bovine collagen, black beans, pigeon peas, 

chick peas, roasted peanuts, and Kellogg’s® All-Bran®. Thirteen ileal-cannulated gilts were 

assigned to an incomplete 13 × 6 Latin square design with 13 diets and 6 periods. The 10 

ingredients were used to formulate 10 different diets where each ingredient was the sole source 

of amino acids in the diet. Pigs on treatments 1 to 10 were fed the 10 diets containing the 10 food 

sources. Pigs on treatments 11, 12, and 13 were fed the whey protein isolate diet, the sorghum 

diet, and the pigeon pea diet, respectively. These extra replications were used to determine intra-

experiment variability. Results indicated that the SID for total amino acids was greater (P < 0.05) 

in toasted wheat bread and sorghum flour than in all other proteins except for chickpeas. The 

SID for mean indispensable amino acids, mean dispensable amino acids and total amino acids 

was lower (P < 0.05) in All-Bran® than in all other proteins except roasted peanuts. The DIAAS 

was 0 for zein, bovine collagen, roasted peanuts, and All-Bran® for all reference ratios. Whey 

protein isolate had the greatest (P < 0.05) DIAAS for infants, followed by chickpeas, pigeon 

peas, sorghum flour, black beans, and toasted wheat bread, in descending order. Whey protein 
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isolate had the greatest (P < 0.05) DIAAS for children (6 m to 3 y) followed by chick peas and 

pigeon peas. Black beans and sorghum flour had DIAAS values that were not different, but these 

values were greater (P < 0.05) than the DIAAS for toasted wheat bread. Whey protein isolate had 

the greatest (P < 0.05) DIAAS for older children (3 y and older), followed by chickpeas. Pigeon 

peas had a greater (P < 0.05) DIAAS than sorghum flour, which in turn had a greater (P < 0.05) 

DIAAS than black beans, and black beans had a greater (P < 0.05) DIAAS than toasted wheat 

bread. For DIAAS calculated for all 3 reference ratios, there were no differences between 

replications for whey protein isolate, sorghum, or pigeon peas. The DIAAS values determined in 

this experiment indicate that most legumes and cereal grain products tested in this experiment are 

not adequate as the sole sources of protein for humans. Results of this experiment also 

demonstrate that the pig model is a consistent model for determination of amino acid digestibility 

and calculation of DIAAS values when different protein sources are used. 

Key words: amino acids, protein quality, DIAAS, pigs 

 

INTRODUCTION 

 The digestible indispensable amino acid score (DIAAS) is used to evaluate the protein 

quality of human foods (FAO, 2013). Values for DIAAS in cereal grains, dairy proteins, soy and 

pea protein, and protein hydrolysates have been determined (Cervantes-Pahm et al., 2014; 

Rutherfurd et al., 2015; Mathai et al., 2017; Abelilla et al., 2018; Bindari et al., 2018). However, 

human diets contain many difference sources of protein and many proteins are used only locally 

and not throughout the world, but many protein sources have not been characterized in terms of 

DIAAS values. In addition, most foods are consumed after some kind of preparation, which 
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often involves thermal treatments, and it is, therefore, necessary to determine DIAAS in foods 

that are prepared in the form they are consumed by humans. 

 The pig has been recognized as a preferred model to generate values for DIAAS if data 

cannot be obtained directly from humans (FAO, 2013), although the rat has been used in some 

cases (Rutherfurd et al., 2015). Values for DIAAS are relatively easy to calculate based on amino 

acid digestibility in pigs and because pigs are omnivores they will consume most foods in the 

same form as humans do. However, to obtain values for DIAAS that can be used in formulation 

of diets for humans it is necessary that the robustness of the pig model is assessed. There is, 

however, limited data on the repeatability of data for DIAAS obtained in pigs. Therefore, it was 

the objective of this experiment to test the hypothesis that values for DIAAS are different if 

different foods that are known to have different protein values are used. It was the second 

objective to test the hypothesis that values for DIAAS obtained in 2 different groups of pigs that 

are fed the same foods are identical. 

MATERIALS AND METHODS 

Diets, Animals, Housing, and Experimental Design 

All animal care procedures were conducted under a research protocol approved by the 

Institutional Animal Care and Use Committee, University of Illinois, Urbana. A total of 10 

different foods were used: wheat bread, whey protein isolate, zein, sorghum flour, bovine 

collagen, black beans, pigeon peas, chick peas, roasted peanuts, and Kellogg’s® All-Bran® 

(Table 5.1). All ingredients were food grade and procured directly from commercial sources, 

with the exception of the wheat bread. The 10 ingredients were used to formulate 10 different 

diets where each ingredient was the sole source of amino acids in the diet (Table 5.2). Each 
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protein source after their preparation, and immediately before feeding, was combined with a 

specific mixture of non-protein ingredients. This mixture was specific for each food source and 

ensured that a balanced diet was provided to the pigs. Titanium dioxide and diatomaceous earth 

were also included in the non-protein mixture to serve as indigestible markers. In addition, all 

pigs were fed a N-free diet during one period to determine basal endogenous losses of CP and 

amino acids for a total of 11 diets. Attempts were made to prepare ingredients in a way that 

reflected a typical preparation for use in a human diet. Whey protein isolate, zein, and bovine 

collagen required neither cooking nor processing before feeding and therefore, these ingredients 

were mixed as-is with non-protein ingredients to provide complete diets.  

The bread dough was prepared and baked by the Department of Food Science and Human 

Nutrition Pilot Processing Plant at the University of Illinois at Urbana-Champaign and followed 

a standardized recipe (Table 5.3). Sucrose was dissolved in the warmed water and active dry 

yeast was added to this solution. After yeast activity was confirmed, salt, butter, and flour were 

added to the solution. Titanium dioxide and diatomaceous earth were also mixed into the 

solution to ensure even distribution throughout the loaf. Dough was then kneaded in a 

commercial floor mixer (Hobart Legacy® Mixer, Troy, OH) and portioned into 23 × 13 × 6 cm 

baking pans where it was allowed to proof for 1 h before being baked at 175°C for 35 minutes. 

After baking, loaves were cooled to room temperature and then frozen. Immediately before 

feeding, loaves were thawed, sliced, and toasted lightly in a commercial conveyor toaster 

(Waring® Commercial CTS1000B, Torrington, CT). After toasting, bread was broken into 

smaller pieces, mixed with its specific formulation of non-protein ingredients to form a complete 

diet, and fed to the animals. 
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Sorghum flour was mixed with water (1:4). The resulting mixture was then boiled on a 

stovetop for approximately 20 min until a thick, paste-like consistency was achieved; preparation 

took place in large batches to ensure consistency among feedings. The cooked flour was mixed 

with the specific formulation of non-protein ingredients for this diet, and fed to the animals. 

Black beans were procured in the dry form and were soaked in water at room temperature 

for 18 h prior to cooking. After soaking, black beans were strained and weighed. Table salt was 

added, at 720 mg per 100 g black beans, in solution with water, and beans were then pressure-

cooked in a pressure cooker (ALL-AMERICAN®, Model No. 921, Wisconsin Aluminum 

Foundry Company, WS) at a pressure of approximately 100 kPa and a temperature of 121°C for 

a period of 20 min. Cooked black beans were blended with the non-protein ingredients to form 

the complete diet. Approximately 200 mL of water was then added to the diet to improve 

consistency and this mixture was mashed with a potato masher hand tool (Farberware® Potato 

Masher, Model# 5124791, Garden City, New York) before being fed to the animals. 

Pigeon peas were procured in the dry form and were prepared for feeding as outlined for 

black beans with the exception that they were pressure-cooked for only 10 min. The cooked 

pigeon peas were blended with the non-protein ingredients to form a complete diet immediately 

before feeding. Chickpeas were procured in canned form. After straining off of water, chickpeas 

and 200 mL of water were blended using a food processor (Waring® Commercial WFP16S, 

Torrington, CT) until a consistent texture was achieved. Chickpeas were blended with the 

specific formulation of non-protein ingredients to form a complete diet immediately before 

feeding. 

Peanuts were obtained in the de-shelled and roasted form. Peanuts were coarsely ground 

by Department of Food Science and Human Nutrition Pilot Processing Plant at the University of 
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Illinois at Urbana-Champaign. Ground peanuts were blended with the non-protein ingredients 

that were needed to form a complete diet. After mixing, the peanut diet mixture was mixed with 

approximately 200 mL of water to improve consistency before feeding. 

Kellogg’s® All-Bran® was combined with the non-protein ingredients needed to 

formulate a balanced diet. After mixing, approximately 400 mL of water was added to the 

mixture to moisten the cereal and to ensure even distribution of the non-protein mixture. 

Thirteen gilts (initial BW: 29.09 ± 3.26 kg) of PIC Line 03 genetics were surgically fitted 

with T-cannulas in the distal ileum (Stein et al., 1998). After surgery, pigs were housed 

individually in pens (2 × 3m) that had a concrete half-slatted floor and were equipped with a 

feeder and a nipple drinker. Pigs were fed a nutritionally adequate diet based on toasted wheat 

bread (Table 5.4) for one week following surgery to allow time for surgical recovery and to 

adapt the animals to a human diet. Pigs were then allotted to an incomplete 13 × 6 Latin square 

design with 13 diets and six, 7 d periods comprising the rows and the columns of the square. Pigs 

on treatments 1 to 10 were fed the 10 diets containing the 10 food sources. Pigs on treatments 11, 

12, and 13 were fed the whey protein isolate diet, the sorghum diet, and the pigeon pea diet, 

respectively. These additional replications were identified as separate treatments that were used 

to test the hypothesis that values for digestibility of amino acids and DIAAS are repeatable 

within an experiment. Therefore, during each of the Latin square periods, there were 13 pigs on 

treatment with one pig fed each diet with the exception that 2 replicates were fed the whey 

protein isolate, sorghum flour, and pigeon pea diets.  After the initial 3 periods, all 13 pigs were 

fed a N-free diet for one period. This period was placed in the middle of the study to balance 

residual experimental effects on basal endogenous losses of amino acids. After this period, pigs 

were eased back into their normal treatments by feeding for 1 week the toasted wheat bread 
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based diet that was also fed immediately after surgery. Pigs were then returned to the second half 

of the Latin square. 

Data Recording and Sample Collection 

Pigs were fed their respective diets in quantities equivalent to 8% of their metabolic body 

weight (BW0.60). The daily feed allotment was provided in the form of 2 equal daily meals at 

0800 and 1600 h. Water was available at all times. Each period lasted 7 d. The initial 5 d of each 

period was considered an adaptation period to the diet and ileal digesta samples were collected 

following standard procedures (Stein et al., 1998). Briefly, cannulas were opened and cleaned, a 

plastic bag was attached to the cannula barrel, and digesta flowing into the bag were collected. 

Bags were removed whenever they were filled with digesta or at least once every 30 min, and 

immediately frozen at – 20oC to prevent bacterial degradation of the amino acids in the digesta. 

Samples were collected for 9 h each day starting immediately after feeding the morning meal. 

Pig weights were recorded at the beginning of each period and at the conclusion of the 

experiment and these weights were used to calculate the provision of feed during the subsequent 

period. No digesta samples were collected during the adaptation period immediately following 

the N-free treatment period. 

Chemical Analysis 

Ileal digesta samples were thawed, mixed within animal and diet, and a sub-sample was 

lyophilized and ground using a coffee grinder (Hamilton Beach® Model 80335, Glen Allen, 

VA). Diets, ingredients, and all ileal digesta samples were analyzed for dry matter (DM; Method 

927.05; AOAC International, 2007) and CP (Method 990.03; AOAC International, 2007) using a 

LECO FP628 analyzer (LECO Corp., Saint Joseph, MI) at the Monogastric Nutrition Laboratory 
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at the University of Illinois. Samples were analyzed in duplicate, but analyses were repeated if 

the analyzed values were more than 5% apart. All samples were also analyzed for amino acids 

[Method 982.30 E (a, b, c); AOAC International, 2007], and samples of diets and ileal digesta 

were analyzed for Ti (Myers et al., 2004).  

Calculations 

 Apparent ileal digestibility values for amino acids in the protein sources were calculated 

using equation [6] (Stein et al., 2007): 

AID (%) = [1 –[(AAd/AAf) × (Tif/Tid)] × 100    [6] 

where AID is the apparent ileal digestibility of an amino acids (%), AAd is the concentration of 

that amino acid in the ileal digesta DM, AAf is the amino acid concentration of that amino acid 

in the feed DM, Tif is the titanium concentration in the feed DM, and Tid is the titanium 

concentration in the ileal digesta DM.  

 The basal endogenous flow to the distal ileum of each amino acid was determined based 

on the flow obtained after feeding the N-free diet using equation [7] (Stein et al., 2007): 

IAAend = [AAd × (Tif/Tid)]    [7] 

where IAAend is the basal endogenous loss of an amino acid (mg per kg DM intake).  The basal 

endogenous loss of CP was determined using the same equation.  

 By correcting the AID for the IAAend of each amino acid, standardized ileal amino acid 

digestibility values were calculated using equation [8] (Stein et al., 2007): 

SID = [(AID + IAAend)/AAf]    [8] 

where SID is the standardized ileal digestibility value (%).  

The concentration of SID amino acids (g/kg) in each ingredient was calculated by 

multiplying the SID value (%) for each amino acid by the concentration (g/kg) of that amino acid 
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in the ingredient, and this value was then divided by the concentration of CP in the ingredient to 

calculate digestible indispensable amino acid (mg) in 1 g protein (Cervantes-Pahm et al., 2014; 

Mathai et al., 2017). The digestible indispensable amino acid reference ratios were calculated for 

each ingredient using the following equation [9] (FAO, 2013):  

Digestible indispensable amino acid reference ratio = digestible indispensable amino acid 

content in 1 g protein of food (mg) / mg of the same dietary indispensable amino acid in 1g of 

reference protein. [9] 

 The reference proteins were based on FAO (2013) definitions and separate ratios were 

calculated using the reference protein for infants less than 6 months old, children from 6 months 

old to 36 months old, and children older than 36 months old, adolescents, and adults.  The 

DIAAS were then calculated using the following equations [10] (FAO, 2013):  

DIAAS (%) = 100 × lowest value of digestible indispensable amino acid reference ratio.

 [10] 

Statistical Analyses 

Normality of data was verified and outliers were identified using the UNIVARIATE and 

BOXPLOT procedures, respectively (SAS Inst. Inc., Cary, NC). Data were analyzed using the 

MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with the pig as the experimental unit. 

The statistical model to determine differences in SID of amino acid values among ingredients 

included diet as the main effect and pig and period as random effects. Treatment means were 

calculated using the LSMEANS statement, and when significantly different, means were 

separated using the PDIFF option of the MIXED procedure. An ANOVA was conducted to 

determine intra-replication differences in DIAAS between the 2 replicates of pigs fed the diets 
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containing whey protein isolate, sorghum flour, and pigeon peas. Significance for all analyses 

was considered as P < 0.05. 

RESULTS 

All pigs remained healthy throughout the experiment. Diets were consumed readily and 

completely by all animals. The mean AID for indispensable amino acids was greater (P < 0.05) 

in toasted wheat bread and whey protein isolate than in bovine collagen, zein, All-Bran®, and 

roasted peanuts in that order (Table 5.6). The mean AID for dispensable amino acids was 

greatest (P < 0.05) in toasted wheat bread. The AID for mean indispensable amino acids and 

total amino acids was lower (P < 0.05) in All-Bran® than in all other proteins except roasted 

peanuts.  

The SID for total amino acids was greater (P < 0.05) in toasted wheat bread and sorghum 

flour than in all other proteins except for chickpeas (Table 5.7). The SID for mean indispensable 

amino acids, mean dispensable amino acids and total amino acids was lower (P < 0.05) in All-

Bran® than in all other proteins except roasted peanuts.  

The DIAAS was 0 for zein, bovine collagen, roasted peanuts, and All-Bran® for all 

reference ratios. Whey protein isolate had the greatest (P < 0.05) DIAAS for infants, followed by 

chickpeas, pigeon peas, sorghum flour, black beans, and toasted wheat bread, in descending 

order (Table 5.8).  

Whey protein isolate had the greatest (P < 0.05) DIAAS for children (6 m to 3 y) 

followed by chick peas and pigeon peas. Black beans and sorghum flour had DIAAS values that 

were not different, but these values were greater (P < 0.05) than the DIAAS for toasted wheat 

bread. 
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Whey protein isolate had the greatest (P < 0.05) DIAAS for older children (3 y and 

older), followed by chickpeas. Pigeon peas had a greater (P < 0.05) DIAAS than sorghum flour, 

which in turn had a greater (P < 0.05) DIAAS than black beans, and black beans had a greater (P 

< 0.05) DIAAS than toasted wheat bread. 

The SID of Met in whey protein isolate was lower (P < 0.05) for replicate 1 than in 

replicate 2. However, for all other amino acids there were no differences between replications 

regardless of feed ingredient (Table 5.9). For DIAAS calculated for all 3 reference ratios, there 

were no differences between replications for whey protein isolate, sorghum, or pigeon peas 

(Table 5.10). 

For DIAAS for all reference ratios used in this experiment, Lys was the first limiting 

amino acid in toasted wheat bread, zein, sorghum flour, and All-Bran®. The sulfur amino acids, 

Trp, and Thr were the first limiting amino acids for the DIAAS for all reference ratios for black 

beans, bovine collagen, and roasted peanuts, respectively. For both pigeon peas and chick peas, 

the first-limiting amino acid for the DIAAS for children from birth to 6 m was Trp, however, this 

changed to the sulfur amino acids for DIAAS for children 6 m to 3 y and for those 3 y and older. 

For the DIAAS for whey protein isolate from birth to 6 m, the first-limiting amino acid was the 

aromatic amino acids, however, for DIAAS for children 6 m to 3 y and for those 3 y and older, 

the first-limiting amino acid was His. 

DISCUSSION 

 One of the primary objectives of this experiment was to establish DIAAS for several 

significantly different proteins and to determine how the DIAAS methodology describes proteins 

of vastly different origins. Each ingredient used in this experiment was distinct, but was chosen 

to reflect protein sources used in diets around the globe. FAO recommendations for nutrient 
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claims describe DIAAS below 75 to represent ingredients that cannot make any claims regarding 

protein quality, DIAAS between 75 and 100 may be described as “good’ sources of protein, and 

DIAAS greater than 100 can be described as “excellent/high” quality sources of protein. Based 

on the results of this experiment, only whey protein isolate when fed to children above 3 y can 

make the claim to be an excellent protein source. When fed to children between 6 m and 3 y, 

whey protein isolate can be considered a “good” source of protein. Chickpeas can be considered 

a “good” protein source when fed to children above 6 m of age. All other protein sources used in 

this experiment, based on FAO guidelines, can make no claims to their protein quality. This 

observation is significant because several protein sources used in this experiment are major 

staple foods in some countries.  

 Commonly referred to as legumes, 4 of the 10 ingredients used in this experiment are 

representatives of the Fabacaea family: black beans, pigeon peas, chickpeas, and roasted 

peanuts. Combined, in 2013, 121 million metric tons of legumes (excluding soybean) were 

produced (Foyer et al, 2016). As N fixers, legumes play an important role in rural agriculture. In 

addition to their use as food crops, legumes have been proposed as a potential solution to the 

problem of eutrophication of soils due to N fertilization and rural farmers in developing countries 

often alternate fields between legume and grain production (FAO, 1999a). 

The Phaseolus genus represents the majority of common beans. In particular, Phaseolus 

vulgaris, of which the black bean is a variety, represents “the most important food legume for 

direct consumption in the world” (FAO, 1999a; Joshi and Rao, 2017; Izquierdo et al., 2018). In 

part, this is due to the widespread distribution, relative ease to grow, and the long storage life of 

Phaselous vulgaris (FAO, 1999a). In addition, beans have long been considered a high nutrition 

food and are often cited for their high mineral content (Izquierdo et al., 2018) and protein 
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content, particularly when combined with other staples such as rice, wheat, or corn (FAO, 1999a; 

Joshi and Rao, 2017).  

In terms of protein, the black bean contains approximately 22% CP, and when compared 

with other plant proteins it has a relatively high concentration of indispensable amino acids. The 

first limiting amino acid in black beans was the sulfur amino acids, which indicates that black 

beans may complement corn to balance diets because corn has a relatively high concentration of 

sulfur amino acids. However, as results of this experiment demonstrate, the availability of amino 

acids in black beans appears to be low.  

Pigeon peas (Cajanus cajan) are cultivated on approximately 4.79 Mha, with 

considerable production in Africa, India, and Southeast Asia (Saxena et al., 2010b). Pigeon peas 

are the second-most commonly grown pulse in India (second to chickpea) and are a common 

component of the daily diet in India (Saxena et al., 2010a). Pigeon peas are used in most 

households to complement cereals in the diet and meet protein needs (Ofuya and Akhidue, 2005; 

Saxena et al., 2010a). However, it is estimated that in some developing countries, protein is often 

available at one-third of the requirement (Saxena et al., 2010a; 2010b), and it has been estimated 

that nearly 20% of the protein available to man originates from pulses (Reddy et al., 1985; Ofuya 

and Akhidue, 2005). In consideration of the critical role that pulses play in meeting protein 

requirements, the low DIAAS of pigeon peas indicates that pigeon peas by themselves will not 

provide a balanced diet due to the low concentration of sulfur amino acids. It is, therefore, 

important that pigeon peas and other pulses are combined with foods that have greater 

concentrations of sulfur amino acids to provide a balanced meal. There is limited information on 

the DIAAS of pigeon peas, however, the DIAAS of pea protein concentrate (Pisum sativum) has 

been determined (Mathai et al., 2017). Although from a difference genus, the field pea is also a 
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legume. The pigeon peas in our experiment are limited by the same amino acids (Trp and SAA), 

and follow a similar trend across the reference patterns, as was observed for pea protein 

concentrate. Nevertheless, pea protein concentrate is a purified product with nearly twice as 

much CP as pigeon peas and the DIAAS, therefore, is greater in pea protein concentrate than in 

pigeon peas. 

The greater DIAAS of chickpeas (Ciser arietinum) than for the other legumes used in this 

experiment may be because chickpeas was the only legume included in this experiment that was 

canned, and therefore precooked and stored in brine until preparation immediately before 

feeding. However, the amino acid composition of chickpeas is similar to that in black beans and 

pigeon peas and the digestibility values for chickpeas were not different from those of pigeon 

peas, but greater than those for black beans. As a result, the higher DIAAS values for chickpeas 

than for black beans appears to reflect not only the higher digestibility values, but also a more 

favorable amino acid composition of chickpeas in relation to the reference pattern. Pigeon peas 

and chickpeas both have the same first-limiting amino acid for each reference pattern. The higher 

scores for chickpeas are the result of not only the higher concentration of both Trp and SAA, but 

also due to the high SID values for both of those amino acids. Although, it can be assumed that 

the canning method did not alter the amino acid composition of the chickpeas, it is possible that 

the canning process may have increased amino acid digestibility.  

Although a member of the Fabaceae family, the peanut (Arachis hypogaea) is considered 

a legume, but not a pulse according to the FAO (FAOSTAT, 1994). Pulses are defined as 

legumes harvested only for the dry-grain, whereas the peanut is harvested for both its grain and 

its oil. This definition may be an important consideration in terms of protein availability. Despite 

a higher concentration of CP than in all other legumes used in this study, the concentration of 
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amino acids was substantially lower, which in combination with the low SID of amino acids is 

the reason for the low DIAAS values that were calculated for peanuts. The reason for the low 

SID of amino acids in roasted peanuts most likely is that the grinding that was used resulted in 

chunks of peanuts being fed and this likely prevented the digestive enzymes from hydrolyzing all 

the peptide bonds. However, the coarse grinding was chosen to feed peanuts in the form that they 

are likely to be consumed by humans. 

The FAO forecast for 2018 global production of cereal grains (Family Gramineae) is 

approximately 2.6 billion metric tons (FAO, 2018). Despite being close to the record production 

of 2017, this number is below the expected utilization of cereal grains in 2018, and utilization of 

cereal grain is predicted to continue to increase in the future (FAO, 2018). Sorghum is 

considered a subsistence crop and is grown throughout the world due to its ability to grow in 

semi-arid conditions (FAO, 1999b). As a result, sorghum is a major staple crop grown in some 

countries in Africa and is commonly consumed in porridges, breads, and in various malted forms 

(FAO, 1999b). Wheat is grown and consumed throughout the world and has been a staple food in 

Europe, Asia, and Africa for over 8 millennia (FAO, 1999). Currently, wheat is grown on more 

land than any other commercialized crop and it is considered the most important food grain for 

humans (FAOSTAT, 2014). Kellogg’s® All-Bran® is a wheat-based cereal, but unlike the wheat 

bread it is made from the bran of wheat.  

Both the sorghum flour and the wheat bread represent foods made from the endosperm 

portion of grains (FAO, 1999b). The endosperms of cereal grains are primarily composed of 

starch, are low in fiber, and are low in protein, whereas bran products are typically much higher 

in fiber, contain little starch, and have slightly more protein than endosperm products (FAO, 

1999b; Liu and Ng, 2014; Casas and Stein, 2016). Our analyzed values for CP in these 
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ingredients reflects this with All-Bran® having a greater CP concentration than the wheat bread 

and sorghum flour. However, the fractionation of the cereal grain has important implications for 

the digestibility of the resulting products. Fiber can negatively influence amino acid availability 

(Mathai et al., 2015).  Highly processed finely-ground flour products such as sorghum flour and 

the wheat flour used to make the wheat bread represent highly digestible, low fiber products 

which is the reason for the high SID in these foods. The SID values for wheat bread and sorghum 

flour in this experiment are also higher than those reported for whole wheat and whole sorghum 

(Cervantes-Pahm et al., 2014; Mathai et al., 2017), which is likely due to the lower fiber 

concentration in the flour. Although the SID values were higher, the DIAAS values for toasted 

wheat bread were similar to those determined for whole wheat by Cervantes-Pahm et al. (2014) 

and lower than those determined by Mathai et al. (2017), which is due to the lower concentration 

of amino acids in the flour compared with the whole grain. Cooking of the flours may also have 

altered the protein structures, thereby increasing digestibility. 

The processing of wheat bran to produce All-Bran® may have affected the digestibility 

of some amino acids. Heat damage during processing and Maillard reactions are likely the reason 

for the extremely low SID of Lys in All-Bran®, but the SID of Lys in corn bran is also close to 

zero (Liu et al., 2014) as was observed for wheat bran in this experiment. However, of likely 

greater impact on the digestibility of amino acids, is the high fiber content of All-Bran®. Indeed, 

one 50 g serving of All-Bran® contains 16 g of Dietary Fiber. This high fiber content will cause 

All-Bran® to induce high specific endogenous losses of amino acids, and therefore, will reduce 

the SID of all amino acids (Urriola et al., 2013). The high fiber content may also inhibit 

enzymatic hydrolysis of the wheat bran proteins, which is likely to contribute to the low protein 
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quality of All-Bran®. For these reasons, All-Bran® appears to not be an effective protein source 

in the food. 

Zein is one of the main proteins in corn, and is typically used in industrial settings as a 

polymeric compound as opposed to as a food source (Shukla and Cheryan, 2001). Despite 

collagen being the most abundant protein in the human body (Di Lullo et al., 2002), bovine 

collagen is rarely consumed directly as a source of protein, but it may be consumed on a 

supplemental basis (Song et al., 2017). The low concentration of Lys and Trp in zein and the low 

Trp concentration in bovine collagen precludes them from having high DIAAS values because 

DIAAS values are determined by the first limiting amino acid. Therefore, DIAAS values reflect 

a protein’s ability to serve as the sole source of protein in a diet. Accordingly, zein and bovine 

collagen need to be combined with other proteins that have high concentrations of Lys and Trp to 

provide a balanced diet.  

The high DIAAS of whey protein isolate is in agreement with values reported for whey 

proteins (Mathai et al., 2017). Although the first-limiting amino acid is the same, the DIAAS 

values determined in this experiment are significantly lower than reported values because of a 

lower digestibility of amino acids in the whey protein isolate used in this experiment. There was 

also lower concentration of His in the isolate used in this experiment, and because His is the 

first-limiting amino acid for the DIAAS for two of the reference patterns, this resulted in the 

lower DIAAS values in this experiment. 

One of the objectives of this experiment was to compare the intra-experiment variation in 

the measurement of digestibility of amino acids and in the subsequent calculation of DIAAS. For 

the 3 replicated proteins there were no differences in the digestibility of amino acids with the 

exception of Met in whey protein isolate, for which the difference was less than 2%. There were 
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no differences in DIAAS calculated for the proteins between replicated groups. Therefore, based 

on the results of these analyses, it appears that the determination of SID values for amino acids 

and DIAAS of human foods using pigs is repeatable model. 

CONCLUSION 

 The results of this experiment indicate that the DIAAS of legumes tested in this 

experiment can be variable. In particular, results indicate that of the legumes tested, chickpeas 

are the superior protein source in a human diet. Results also indicate that although cereal grain 

products can have high a digestibility of amino acids, their low concentration of amino acids 

limits their value as protein sources in the diet. Results of this experiment also demonstrate that 

the pig model is a consistent model for determination of amino acid digestibility and DIAAS 

determination even when disparate protein sources are used. 
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TABLES 

Table 5.1. Analyzed nutrient composition of foods1 

Item 

Toasted 

wheat 

bread 

Whey 

protein 

isolate 

Zein 
Sorghum 

flour 

Bovine 

collagen 

Black 

beans 

Pigeon 

peas 

Chick 

peas 

Roasted 

peanuts 

All-

Bran® 

DM, % 90.32 96.43 96.56 88.20 97.04 96.23 95.52 31.18 95.50 97.82 

CP, % 11.94 86.44 94.17 9.77 106.55 21.73 25.8 22.19 30.49 14.91 

Indispensable amino acids, % 

   Arg 0.42 1.94 1.66 0.39 8.56 1.34 1.95 1.82 3.78 0.75 

   His 0.27 1.56 1.19 0.24 0.78 0.61 0.62 0.54 0.71 0.35 

   Ile 0.50 6.92 4.37 0.45 1.68 1.04 1.16 1.08 1.15 0.50 

   Leu 0.87 9.77 19.77 1.41 3.16 1.69 1.86 1.79 2.02 0.89 

   Lys 0.30 8.92 0.05 0.25 4.12 1.51 1.76 1.46 1.05 0.40 

   Met 0.19 2.16 1.73 0.19 0.88 0.25 0.20 0.31 0.31 0.18 

   Phe 0.62 2.82 6.84 0.57 2.27 1.23 1.30 1.40 1.61 0.59 

   Thr 0.34 6.90 2.75 0.33 1.81 0.91 0.90 0.80 0.79 0.43 

   Trp 0.16 1.78 0.04 0.11 0.01 0.18 0.20 0.23 0.34 0.18 
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Table 5.1. (cont.)          

   Val 0.54 6.05 3.95 0.56 2.46 1.17 1.28 1.08 1.30 0.67 

Dispensable amino acids, % 

   Ala 0.39 5.02 9.69 0.95 9.55 0.88 1.06 0.94 1.18 0.62 

   Asp 0.52 9.93 5.44 0.69 6.09 2.50 2.89 2.48 3.58 0.92 

   Cys 0.28 2.13 0.89 0.22 0.06 0.26 0.28 0.29 0.41 0.27 

   Glu 4.22 17.46 24.44 2.15 10.47 3.17 4.08 3.33 5.60 3.01 

   Gly 0.47 1.47 1.07 0.34 23.62 0.84 1.01 0.86 1.77 0.72 

   Pro 1.41 6.41 9.34 0.86 14.11 0.90 0.96 0.91 1.25 0.97 

   Ser 0.54 3.88 4.78 0.41 2.85 1.03 1.05 0.99 1.28 0.50 

   Tyr 0.25 2.63 4.99 0.29 0.83 0.67 0.75 0.64 1.25 0.35 

Total 

amino 

acids 

12.28 97.74 102.99 10.41 93.33 20.19 23.30 20.95 29.37 12.30 

 1Values for CP and amino acids are expressed on a DM basis.  
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Table 5.2. Ingredient composition of experimental diets (as-is basis) 

 Diet 

Ingredient, % 
Toasted 

wheat 

bread 

Whey 

protein 

isolate 

Zein 
Sorghum 

flour 

Bovine 

collagen 

Black 

beans 

Pigeon 

peas 

Chick 

peas 

Roasted 

peanuts 

All-

Bran® 
N-free 

Protein source  96.05 11.30 11.70 94.50 10.20 44.80 48.80 52.20 35.7 80.30 - 

Corn starch - 65.10 62.80 - 66.20 31.70 27.70 24.70 40.80 - 76.40 

Sucrose - 10.00 10.00 - 10.00 10.00 10.00 10.00 10.00 - 10.00 

Cellulose - 3.00 3.00 - 3.00 3.00 3.00 3.00 3.00 7.25 3.00 

Canola oil - 5.00 5.00 - 5.00 5.00 5.00 5.00 5.00 7.25 5.00 

L-Lysine HCl - - 1.20 - - - - - - - - 

L-Tryptophan - - 0.20 - - - - - - - - 

Dicalcium 

phosphate 
2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 
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Table 5.2. (cont.)           

Limestone 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

Sodium 

bicarbonate 
0.30 0.30 0.50 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

Sodium 

chloride2 
- 0.40 0.40 0.40 0.40 0.40 0.40 - 0.40 0.10 0.40 

Magnesium 

oxide 
- 0.10 0.10 - 0.10 - - - - - 0.10 

Potassium 

carbonate 
0.70 0.70 1.00 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

Titanium 

dioxide 
- 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

Diatomaceous 

earth 
- 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

Vitamin 

mineral 

mixture1 

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

 1The vitamin-micromineral premix provided the following quantities of vitamins and micro minerals per kilogram of complete  
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Table 5.2. (cont.) 

diet: vitamin A as retinyl acetate, 11,136 IU; vitamin D3 as cholecalciferol, 2,208 IU; vitamin E as DL-alpha tocopheryl acetate, 66 

IU; vitamin K as menadione dimethylprimidinol bisulfite, 1.42 mg; thiamin as thiamine mononitrate, 0.24 mg; riboflavin, 6.59 mg;  

pyridoxine as pyridoxine hydrochloride, 0.24 mg; vitamin B12, 0.03 mg; D-pantothenic acid as D-calcium pantothenate, 23.5 mg; 

niacin, 44.1 mg; folic acid, 1.59 mg; biotin, 0.44 mg; Cu, 20 mg as copper sulfate and copper chloride; Fe, 126 mg as ferrous sulfate; 

I, 1.26 mg as ethylenediamine dihydriodide; Mn, 60.2 mg as manganese sulfate; Se, 0.3 mg as sodium selenite and selenium yeast; 

and Zn, 125.1  mg as zinc sulfate.  

2 For the black bean and pigeon pea treatments, this value also accounts for the salt added during the pressure cooking process.  
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Table 5.3. Ingredient composition of toasted wheat bread (as-is basis) 

Ingredient % 

Bleached whole wheat flour 51.50 

Sucrose 9.49 

Active dry yeast 0.91 

Salt 0.61 

Butter 4.04 

Water 32.31 

Titanium dioxide 0.40 

Diatomaceous earth 0.74 

Total 100 
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Table 5.4. Ingredient composition of basal adaptation diet (as-is basis) 

Ingredient % 

Toasted wheat bread  68.80 

Casein 7.00 

Wheat gluten meal 5.00 

Whey powder 5.00 

Potato protein 3.00 

Skim milk powder 2.00 

Canola oil 5.00 

Dicalcium phosphate 1.70 

Calcium carbonate 0.50 

Potassium carbonate 0.30 
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Table 5.4. (cont.)  

Sodium bicarbonate 0.50 

L-Lysine HCl 0.20 

Vitamin mineral mixture1 1.00 

Total 100.00 

1The vitamin-micromineral premix provided the following quantities of vitamins and micro minerals per kilogram of complete 

diet: vitamin A as retinyl acetate, 11,136 IU; vitamin D3 as cholecalciferol, 2,208 IU; vitamin E as DL-alpha tocopheryl acetate, 66 

IU; vitamin K as menadione dimethylprimidinol bisulfite, 1.42 mg; thiamin as thiamine mononitrate, 0.24 mg; riboflavin, 6.59 mg;  

pyridoxine as pyridoxine hydrochloride, 0.24 mg; vitamin B12, 0.03 mg; D-pantothenic acid as D-calcium pantothenate, 23.5 mg; 

niacin, 44.1 mg; folic acid, 1.59 mg; biotin, 0.44 mg; Cu, 20 mg as copper sulfate and copper chloride; Fe, 126 mg as ferrous sulfate; 

I, 1.26 mg as ethylenediamine dihydriodide; Mn, 60.2 mg as manganese sulfate; Se, 0.3 mg as sodium selenite and selenium yeast; 

and Zn, 125.1  mg as zinc sulfate. 
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Table 5.5. Analyzed nutrient composition of experimental diets 

Item 

Toasted 

wheat 

bread 

Whey 

protein 

isolate 

Zein1 

Sorghum 

flour 

Bovine 

collagen 

Black 

beans 

Pigeon 

peas 

Chick 

peas 

Roasted 

peanuts 

All-

Bran® 

DM, % 90.97 90.98 91.17 88.72 90.97 43.06 44.72 45.48 92.86 97.42 

Indispensable amino acids, g/kg DM 

Arg 3.66 2.31 1.97 3.20 8.90 5.87 9.50 9.55 12.95 6.04 

His 2.31 1.98 1.54 1.97 0.88 2.68 3.01 2.83 2.44 2.81 

Ile 4.33 8.79 5.59 3.76 1.98 4.55 5.67 5.67 3.95 4.06 

Leu 7.61 12.42 25.01 11.66 3.85 7.42 9.09 9.39 6.92 7.20 

Lys 2.60 11.21 0.06 2.07 4.40 6.60 8.58 7.66 3.59 3.23 

Met 1.64 2.64 2.08 1.60 0.99 1.09 0.97 1.63 1.08 1.49 

Phe 5.39 3.63 8.67 4.70 2.64 5.37 6.34 7.35 5.52 4.80 
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Table 5.5. (cont.)          

Thr 2.98 8.68 3.51 2.73 2.09 4.00 4.39 4.20 2.69 3.48 

Trp 1.35 1.87 0.01 0.94 0.11 0.77 0.97 1.21 1.15 1.49 

Val 4.72 7.58 5.05 4.61 2.86 5.14 6.23 5.67 4.45 5.46 

Total 36.58 61.12 64.94 37.23 28.69 43.50 54.77 55.14 44.72 40.07 

Dispensable amino acids, g/kg DM 

Ala 3.37 6.49 12.29 7.90 10.77 3.87 5.16 4.93 4.05 5.05 

Asp 4.52 12.75 7.02 5.74 7.04 10.97 14.10 13.01 12.27 7.45 

Cys 2.41 2.75 1.10 1.79 0.11 1.14 1.38 1.52 1.40 2.15 

Glu 36.68 22.53 30.71 17.86 12.20 13.88 19.93 17.47 19.19 24.34 

Gly 4.04 1.98 1.43 2.82 27.26 3.69 4.90 4.51 6.06 5.80 

Pro 12.23 7.91 11.74 7.15 15.83 3.96 4.70 4.77 4.27 7.86 
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Table 5.5. (cont.)          

Ser 4.72 5.17 5.70 3.38 3.30 4.50 5.11 5.19 4.38 4.06 

Tyr 2.21 2.53 4.94 2.44 0.99 2.91 3.68 3.36 4.27 2.81 

Total 70.18 62.10 74.92 49.08 77.50 44.91 58.96 54.77 55.88 59.52 

Total 

amino 

acids 

106.77 123.22 139.85 86.31 106.19 88.41 113.73 109.91 100.60 99.59 

1Lys and Trp values are based on calculation due to the addition of synthetic sources to the diet.  
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Table 5.6. Apparent ileal digestibility (AID) of amino acids in foods 

Item 

Toasted 

wheat 

bread 

Whey 

protein 

isolate 

Zein 
Sorghum 

flour 

Bovine 

collagen 

Black 

beans 

Pigeon 

peas 

Chick 

peas 

Roasted 

peanuts 

All-

Bran® 

Pooled 

SEM 

P-

value 

Indispensable amino acids, % 

Arg 78.7ab 54.0c 26.9d 80.0ab 85.4ab 72.7b 87.7a 89.0a 55.7c 51.9c 5.6 <0.05 

His 84.3a 79.8a 50.5c 81.7a 54.8bc 59.6b 76.7a 77.9a 17.9e 38.4d 3.3 <0.05 

Ile 84.2ab 88.0a 58.4c 80.5ab 66.3c 59.1c 76.7b 75.7b -0.5e 29.9d 3.3 <0.05 

Leu 85.8a 89.2a 65.5d 85.2ab 67.2cd 58.4d 75.4c 76.2bc 9.5f 35.6e 3.7 <0.05 

Lys 58.6c 86.5a -1,546.7 59.1c 68.1bc 67.6c 82.1a 79.9ab -48.6e -19.8d 4.5 <0.05 

Met 87.7a 89.7a 63.1cd 87.7a 71.1bc 55.1d 67.7c 79.0ab 0.90f 38.9e 4.1 <0.05 

Phe 87.7a 80.4ab 61.9d 82.9ab 70.7cd 62.8d 78.5bc 81.7ab 22.7f 41.7e 3.4 <0.05 

Thr 69.4a 71.2a 49.0bc 63.7a 46.8c 37.8c 63.0a 60.4ab -65.5e -8.6d 4.5 <0.05 

Trp 85.5a 86.8a -374.1 79.7ab -62.9 44.0d 61.1c 71.9bc 14.7e 32.6d 4.7 <0.05 
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Table 5.6. (cont.)            

Val 77.6a 76.2a 53.3cd 74.1a 61.8bc 44.5d 70.0ab 67.0ab -19.7f 18.0e 4.2 <0.05 

Mean 80.8a 82.0a 57.8c 79.0ab 70.5b 57.3c 76.0ab 77.4ab 12.2e 27.8d 3.5 <0.05 

Dispensable amino acids, % 

Ala 71.2ab 71.7ab 60.8b 82.9a 82.8a 37.6c 64.6b 66.5b -26.8e 14.8d 4.6 <0.05 

Asp 67.9c 84.4a 53.9d 75.4abc 46.5d 51.6d 77.7ab 69.3bc 18.0e -9.8f 3.7 <0.05 

Cys 83.1a 84.4a 41.8b 74.8a -254.6 -12.7c 46.8b 46.5b -22.9c -10.0c 5.1 <0.05 

Glu 94.3a 83.0bc 64.6d 84.5b 75.9c 65.2d 82.5bc 80.1bc 36.6e 65.3d 2.9 <0.05 

Gly 49.7ab -30.5c -72.7d 49.4ab 69.6a -3.3c 30.5b 31.6b -31.1c -23.6c 15.6 <0.05 

Pro 62.7ab -25.7c 6.8abc 79.0a 41.1abc -4.2bc 3.5bc 54.2ab -224.9d -21.7c 31.6 <0.05 

Ser 82.9a 65.6bcd 59.9cd 72.5b 58.0de 49.6e 69.0bc 72.7b -2.5g 16.9f 4.3 <0.05 

Tyr 78.4a 76.1a 60.3b 75.1a 42.8c 56.0b 73.4a 75.1a 29.1d 28.5d 3.7 <0.05 
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Table 5.6. (cont.)            

Mean 82.3a 62.8cd 50.8de 77.2ab 65.4bc 43.6e 66.1bc 67.2bc -5.0g 24.5f 5.3 <0.05 

Total 

amino 

acids 

82.0a 72.3ab 53.7c 77.7ab 67.1b 50.3c 70.8b 72.2ab 2.6e 26.1d 4.3 <0.05 

a-gMeans within a row lacking a common superscript letter differ (P < 0.05). Values lacking superscript were not included in 

Fisher’s Least Significant Difference analysis or mean amino acids and total amino acids least squares means estimations. 

1Data are least square means of 6 observations per treatment; with the exception of the whey protein isolate, sorghum, and 

pigeon peas treatments for which there are 12 observations.  
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Table 5.7. Standardized ileal digestibility (SID) of amino acids in foods1,2 

Item 

Toasted 

wheat 

bread 

Whey 

protein 

isolate 

Zein 
Sorghum 

flour 

Bovine 

collagen 

Black 

beans 

Pigeon 

peas 

Chick 

peas 

Roasted 

peanuts 

All-

Bran® 

Pooled 

SEM 

P-

value 

Indispensable amino acids, % 

Arg 104.3ab 93.1bc 72.2d 108.2a 94.7abc 88.0c 96.9abc 98.8abc 63.8d 67.2d 5.6 <0.05 

His 96.0a 93.4abc 67.9d 95.5ab 85.4c 69.7d 85.7c 87.5bc 28.9f 48.0e 3.3 <0.05 

Ile 95.5a 93.5ab 67.2d 93.5ab 90.9abc 69.8d 85.3bc 84.3c 11.9f 41.9e 3.3 <0.05 

Leu 96.3a 95.5a 68.4c 92.3ab 87.6ab 68.7c 84.0b 84.7b 20.7e 46.2d 3.7 <0.05 

Lys 85.1ab 92.6a -472.0 91.9a 84.0ab 77.5b 90.2a 88.9ab -29.1d 1.6c 4.5 <0.05 

Met 96.7a 95.1a 69.2c 97.2a 85.5ab 68.0c 82.2b 88.1ab 13.5e 47.9d 4.7 <0.05 

Phe 96.8a 93.5ab 67.2c 93.4ab 88.9ab 71.6c 86.0b 88.4ab 31.3e 51.6d 3.4 <0.05 

Thr 94.4a 80.0bc 69.6c 91.5ab 82.3abc 56.3d 79.9bc 78.4c -38.3f 12.2e 4.5 <0.05 

Trp 97.8a 95.7a -55.6 97.3a 85.8 65.1c 78.0b 85.9ab 28.8e 43.6d 4.7 <0.05 

Val 95.4a 87.0ab 69.0c 92.8ab 90.4ab 60.1c 82.9b 81.8b -1.6e 32.5d 4.2 <0.05 

Mean 96.4a 91.2ab 67.8c 94.8ab 90.3ab 69.9c 86.4b 87.8ab 24.5e 41.5d 3.5 <0.05 
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Table 5.7. (cont.) 

Dispensable amino acids, % 

Ala 98.2a 85.6bc 67.8d 95.0ab 91.3abc 60.3d 81.9c 84.9bc -4.9f 32.4e 4.6 <0.05 

Asp 93.5a 93.5a 70.1cd 95.5a 62.5d 61.9d 85.8ab 78.2bc 27.5e 5.6f 3.7 <0.05 

Cys 93.4a 93.2a 63.5b 88.6a -37.6 8.3c 64.2b 62.4b -5.8d 0.9cd 5.1 <0.05 

Glu 98.2a 88.7b 68.3c 92.2ab 86.4b 74.0c 89.0b 87.6b 43.1d 70.4c 2.9 <0.05 

Gly 111.2ab 83.6bc 85.2bc 128.7a 77.8bc 55.1c 74.7bc 87.8bc 9.6d 18.8d 15.7 <0.05 

Pro 132.5bc 73.7c 74.2c 185.5ab 90.0c 189.5a 168.3ab 210.0a -33.1d 84.9c 31.3 <0.05 

Ser 98.4a 79.4cd 71.7de 93.9ab 79.5cd 64.9e 82.9c 86.5bc 14.2g 34.4f 4.3 <0.05 

Tyr 95.7a 91.3ab 68.0c 90.8ab 81.5b 69.1c 83.8b 86.5ab 38.0d 42.1d 3.7 <0.05 

Mean 103.1ab 84.8cd 68.4e 104.9a 82.8cd 73.3de 88.8c 92.6bc 21.1g 48.6f 5.3 <0.05 

Total 

amino 

acids 

102.0a 88.9b 69.1c 101.5a 86.3b 72.9c 88.5b 91.2ab 23.9e 47.2d 

4.3 <0.05 

a-gMeans within a row lacking a common superscript letter differ (P < 0.05). Values lacking superscript were not included in  
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Table 5.7. (cont.) 

Fisher’s Least Significant Difference analysis or mean amino acids and total amino acids least squares means estimations. 

1Data are least square means of 6 observations per treatment. 

2Standardized ileal digestibility values were calculated by correcting values for apparent ileal digestibility for the basal ileal 

endogenous losses. Endogenous losses (g/kg of DMI) of amino acids were as follows: Arg, 1.01; His, 0.31; Ile, 0.57; Leu, 0.90; Lys, 

0.91; Met, 0.16; Phe, 0.55; Thr, 0.86; Trp, 0.20; Val, 0.93; Ala, 1.01; Asp, 1.32; Cys, 0.29; Glu, 1.58; Gly, 2.57; Ser, 0.80; Tyr, 0.45.  
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Table 5.8. Digestible indispensable amino acid scores (DIAAS) values in experimental foods1 

Ingredient birth to 6 m2 6 m to 3 y3 3 y and older4 

Toasted wheat bread 28 (Lys) 34 (Lys) 41 (Lys) 

Whey protein isolate 61 (AAA) 82 (His) 103 (His) 

Zein 0 (Lys) 0 (Lys) 0 (Lys) 

Sorghum flour 31 (Lys) 37 (Lys) 45 (Lys) 

Bovine collagen 0 (Trp) 0 (Trp) 0 (Trp) 

Black beans 30 (SAA) 37 (SAA) 43 (SAA) 

Pigeon peas 37 (Trp) 48 (SAA) 57 (SAA) 

Chick peas 53 (Trp) 76 (SAA) 89 (SAA) 

Roasted peanuts 0 (Thr) 0 (Thr) 0 (Thr) 

All-Bran® 0 (Lys) 0 (Lys) 0 (Lys) 

1First-limiting amino acid is in parentheses. 

2DIAAS values were calculated using the recommended amino acid scoring pattern for an infant (birth to 6 months). The 

indispensable amino acid reference patterns are expressed as mg amino acid / g protein: His, 21; Ile, 55; Leu, 96; Lys, 69; sulfur 

amino acids, 33; aromatic amino acids, 94; Thr, 44; Trp, 17; Val, 55 (FAO, 2013). 
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Table 5.8. (cont.) 

3DIAAS values were calculated using the recommended amino acid scoring pattern for a child (6m to 3y). The indispensable 

amino acid reference patterns are expressed as mg amino acid / g protein: His, 20; Ile, 32; Leu, 66; Lys, 57; sulfur amino acids, 27; 

aromatic amino acids, 52; Thr, 31; Trp, 8.5; Val, 40 (FAO, 2013). 

4DIAAS values were calculated using the recommended amino acid scoring pattern for older child, adolescent, and adult. The 

indispensable amino acid reference patterns are expressed as mg amino acid / g protein: His, 16; Ile, 30; Leu, 61; Lys, 48; sulfur 

amino acids, 23; aromatic amino acids, 41; Thr, 25; Trp, 6.6; Val, 40 (FAO, 2013).  
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Table 5.9. Intra-experiment variations in standardized ileal digestibility (SID) of amino acids in foods1,2 

 Whey protein isolate  Sorghum flour 
 

Pigeon peas 

Item 

Group 

1 

Group 

2 
SEM P-value  

Group 

1 

Group 

2 
SEM P-value  

Group 

1 

Group 

2 
SEM P-value 

Indispensable amino acids, 

% 

            

Arg 93.1 104.8 9.0 0.202  108.2 109.0 2.8 0.346  96.9 97.9 1.0 0.503 

His 93.4 95.7 1.8 0.242  95.5 91.6 2.6 0.337  85.7 86.2 2.2 0.698 

Ile 93.5 94.3 0.6 0.359  93.5 88.7 3.6 0.310  85.3 86.4 2.0 0.602 

Leu 95.5 96.5 1.0 0.316  92.3 88.7 2.9 0.372  84.0 86.5 2.4 0.355 

Lys 92.6 94.8 1.4 0.175  91.9 88.3 8.5 0.819  90.2 91.4 1.6 0.472 

Met 95.1 96.8 0.6 0.012  97.2 94.7 1.2 0.225  82.2 81.8 2.5 0.882 

Phe 93.5 93.4 1.6 0.944  93.4 89.0 3.09 0.335  86.0 87.5 2.1 0.510 

Thr 80.0 80.6 2.8 0.825  91.5 85.4 7.2 0.42  79.9 76.8 3.6 0.417 

Trp 95.7 96.0 1.3 0.868  97.3 90.7 5.2 0.215  78.0 80.5 3.7 0.539 

Val 87.0 88.5 2.04 0.480  92.8 88.03 5.4 0.404  82.9 83.0 2.6 0.986 
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Table 5.9. (cont.) 

Mean 91.2 92.9 1.5 0.300  94.8 90.7 4.0 0.387  86.4 88.1 2.1 0.437 

Dispensable amino acids, % 

Ala 85.6 89.1 2.8 0.231  95.0 91.6 3.0 0.423  81.9 85.0 2.7 0.308 

Asp 93.5 95.2 1.4 0.213  95.5 91.3 4.3 0.288  85.8 87.4 1.7 0.576 

Cys 93.2 93.9 1.4 0.646  88.6 84.8 4.1 0.445  64.2 59.2 4.6 0.308 

Glu 88.7 91.4 1.4 0.082  92.2 89.2 2.6 0.438  89.0 90.4 1.3 0.308 

Gly 83.6 116.9 21.5 0.158  128.7 109.8 10.6 0.143  74.7 80.8 12.7 0.763 

Pro 73.7 131.9 38.1 0.189  185.5 193.3 7.5 0.760  168.3 228.7 37.2 0.188 

Ser 79.4 83.3 3.9 0.363  93.9 91.4 4.6 0.628  82.9 86.6 3.9 0.420 

Tyr 91.3 92.5 2.3 0.606  90.8 84.4 5.5 0.350  83.8 85.8 2.8 0.510 

Mean 84.8 95.9 6.5 0.162  104.9 104.2 4.4 0.352  88.8 96.8 5.3 0.274 

Total 

amino 

acids 

88.9 95.4 3.9 0.144  101.5 99.8 4.1 0.326  88.5 93.8 3.5 0.294 

1Data are least square means of 6 observations per treatment. 
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Table 5.9. (cont.) 

2Standardized ileal digestibility values were calculated by correcting values for apparent ileal digestibility for the basal ileal 

endogenous losses. Endogenous losses (g/kg of DMI) of amino acids were as follows: Arg, 1.01; His, 0.31; Ile, 0.57; Leu, 0.90; Lys, 

0.91; Met, 0.16; Phe, 0.55; Thr, 0.86; Trp, 0.20; Val, 0.93; Ala, 1.01; Asp, 1.32; Cys, 0.29; Glu, 1.58; Gly, 2.57; Ser, 0.80; Tyr, 0.45.  
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Table 5.10. Analysis of variation in digestible indispensable amino acid score (DIAAS) values within intra-experiment replication for 

selected proteins. 

Item 
Whey protein isolate  Sorghum flour  Pigeon peas 

birth to 6 m1 

 DIAAS, Group 1 61  31  37 

 DIAAS, Group 2 60  30  37 

 SEM 3.2  5.3  12.4 

 P-value 0.805  0.833  0.934 

6 m to 3 y2 

 DIAAS, Group 1 83  37  50 

 DIAAS, Group 2 82  36  48 

SEM 3.1  5.2  9.4 

 P-value 0.241  0.873  0.377 

3 y and older3 

 DIAAS, Group 1 105  45  59 

 DIAAS, Group 2 102  43  56 
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Table 5.10. (cont.)      

 SEM 3.4  5.1  9.4 

 P-value 0.239  0.811  0.368 

1DIAAS values were calculated using the recommended amino acid scoring pattern for an infant (birth to 6 months). The 

indispensable amino acid reference patterns are expressed as mg amino acid / g protein: His, 21; Ile, 55; Leu, 96; Lys, 69; sulfur 

amino acids, 33; aromatic amino acids, 94; Thr, 44; Trp, 17; Val, 55 (FAO, 2013). 

2DIAAS values were calculated using the recommended amino acid scoring pattern for a child (6m to 3y). The indispensable 

amino acid reference patterns are expressed as mg amino acid / g protein: His, 20; Ile, 32; Leu, 66; Lys, 57; sulfur amino acids, 27; 

aromatic amino acids, 52; Thr, 31; Trp, 8.5; Val, 40 (FAO, 2013). 

3DIAAS values were calculated using the recommended amino acid scoring pattern for older child, adolescent, and adult. The 

indispensable amino acid reference patterns are expressed as mg amino acid / g protein: His, 16; Ile, 30; Leu, 61; Lys, 48; sulfur 

amino acids, 23; aromatic amino acids, 41; Thr, 25; Trp, 6.6; Val, 40 (FAO, 2013). 
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CHAPTER 6: CONCLUDING REMARKS 

 Protein is an essential component of the human diet a source of indispensable amino 

acids. Yet, throughout the developing world, amino acid deficiency is rampant. Although amino 

acid deficiency incidence rates are multi-factorial, one of the primary causes is the consumption 

of staple foods that are low in indispensable amino acids. Changing dietary patterns in the 

developing world would require great efforts and large cultural shifts. However, small alterations 

to the diet made to optimize amino acid profiles using data from protein quality assessments may 

have lasting effects. Therefore, it is critical that a variety of foods are evaluated for their protein 

quality and a large number of DIAAS values are made available for use. 

 Protein quality evaluation is not a new science. Proteins have long been evaluated for 

their capacity to serve as a nutrient source in diets. Early on in protein nutrition research, it was 

clear that not all proteins were equal. However, the shift in viewing a protein’s amino acids as 

individual nutrients is relatively recent. Nonetheless, this change in perspective has been widely 

adopted and hundreds of proteins have been evaluated based on their amino acid compositions. 

Yet, as our understanding of amino acid nutrition increased, considerations for bioavailability 

became of greater concern. One of the first systems for evaluating protein value as a nutrient 

based on both its amino acid composition and an estimate for bioavailability was the protein 

digestibility corrected amino acid scoring (PDCAAS) system. This system was a significant 

improvement over simple amino acid profiles, and as a result PDCAAS was considered the gold-

standard for protein quality research for over 25 years. 

 Despite PDCAAS’ prevalence and proven value to the nutritionist, it became clear that 

improvements to it utilizing modern advancements could be made. In particular, a more apt 
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animal model and better estimates for digestibility of amino acids were now available. Utilizing 

these updates, the digestible indispensable amino acid scoring (DIAAS) was proposed. Two 

fundamental issues prevent the immediate adoption of DIAAS as the standard for protein quality 

evaluation: 1) a lack of evidence that the DIAAS system is an accurate, precise, and consistent 

method for protein quality evaluation and, 2) the lack of a large database of DIAAS values for 

foods.  

The overall objective of this research was to utilize the DIAAS system to determine 

protein quality values for various foods, while simultaneously assessing its merit as a 

methodology worthy of replacement of the PDCAAS system. Combined, the DIAAS values for 

over 20 different proteins were determined in these experiments. Many of these proteins 

represent staple foods of large segments of the population in the developing world. The DIAAS 

values generated for those proteins highlight the relative deficiency in indispensable amino acids 

that those populations are subject to, but also offer valuable information on how to best combat 

those deficiencies with complementary proteins. Various high quality proteins were evaluated in 

these experiments, many of which represent potential options for use as complementary proteins 

in the developing world. 

 In addition to the generation of DIAAS values, this research also helped to compare the 

DIAAS system to the current PDCAAS system and demonstrated that PDCAAS values 

overestimate the protein quality of certain foods. Although, perhaps of seemingly low 

consequence, the implications of overestimating protein quality, particularly with respect to 

populations at risk of amino acid deficiency, are dire. This research also helped to validate the 

DIAAS system as a robust and repeatable methodology for evaluating various protein sources. 
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As a result, this research has strengthened the argument that the DIAAS system is not only an 

acceptable model for protein quality evaluation, but also the preferred. 


