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ABSTRACT 

Five experiments were conducted to determine Ca digestibility in feed ingredients and to 

demonstrate the interactions among Ca, P, and phytase in diets fed to gestation sows or growing 

pigs. In Exp. 1, two experiments were conducted to test the hypothesis that standardized total 

tract digestibility (STTD) of Ca and the response to microbial phytase is constant among 

different sources of calcium carbonate and that the STTD of Ca is constant among different 

sources of dicalcium phosphate (DCP) when fed to growing pigs. Results indicated that there 

were no interactions between phytase and source of calcium carbonate. Values for STTD of Ca 

in calcium carbonate were greater (P < 0.001) for diets containing microbial phytase compared 

with diets without exogenous phytase, but values for STTD of Ca differed (P = 0.006) among the 

4 sources of calcium carbonate. Values for STTD of Ca in DCP appears to be constant regardless 

of origin. In Exp. 2, the objective was to determine correlations between individual bones in the 

body and total bone ash to identify the bone that is most representative of total body bone ash in 

growing pigs. Pigs were fed diets containing 60 or 100% of the requirement for STTD Ca and 

STTD P. Results indicated that growth performance of pigs and bone ash were negatively 

affected by dietary Ca and P below the requirement. Metacarpals, metatarsals, and tibia were 

more representative of total body bone ash compared with femur, fibula, and ribs. Experiment 3 

was conducted to test the hypothesis that there are no differences between gestating sows and 

growing pigs for STTD and retention of Ca and P. Two diets containing normal- or high-phytate 

were fed to growing pigs and gestating sows. Phytate level did not affect the STTD of Ca or Ca 

retention by gestating sows whereas the STTD of Ca and Ca and P retentions were greater if 

growing pigs were fed the normal-phytate diet than if they were fed the high-phytate diet 

(physiological state × phytate level interaction, P < 0.001). The STTD of P was greater for the 
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normal-phytate diet than for the high-phytate diet, but the difference was greater for growing 

pigs than for gestating sows (physiological state × phytate level interaction; P = 0.002). 

Regardless of phytate level, gestating sows had reduced digestibility and retention of Ca and P 

compared with growing pigs. Experiment 4 was conducted to test the hypothesis that the STTD 

of Ca and the response to microbial phytase on STTD of Ca, apparent total tract digestibility 

(ATTD), and retention of Ca and P does not change during gestation. Throughout gestation, 

sows were fed 4 diets that were Ca-free diet or a corn-based diet in which Ca carbonate was the 

sole source of Ca without or with microbial phytase. Results indicated that there were no 

interactions between period of gestation and dietary phytase. Supplementation of microbial 

phytase did not affect STTD of Ca, Ca retention, ATTD of P, or P retention in sows fed the 

calcium carbonate-containing diet. The ATTD of Ca, the ATTD of P, and the retention of Ca 

were least (P < 0.05) in mid-gestation, followed by early- and late-gestation, respectively, and 

the STTD of Ca in mid-gestation was also reduced (P < 0.05) compared with sows in early- or 

late-gestation. Phosphorus retention was greater (P < 0.05) in late-gestation than in the earlier 

periods. In Exp. 5, the objective was to test the hypothesis that the Ca level in diets fed to late 

gestating sows affect the ATTD and retention of Ca and P, blood Ca and P, serum concentrations 

of hormones, and blood biomarker for bone synthesis and resorption. Sows in late-gestation were 

fed one of 4 experimental diets containing 25, 50, 75, or 100% of the requirement for Ca with a 

constant level of P. Results indicated that values for the ATTD of Ca increased quadratically (P 

= 0.039) as Ca in diets increased. Calcium retention increased quadratically (P < 0.05) as Ca 

intake increased. The ATTD of P linearly decreased (P < 0.001), but P retention increased as 

dietary Ca increased. Serum concentrations of Ca and P and estrogen, calcitonin, and parathyroid 

hormone were not affected by Ca concentrations in diets. The ratio between serum osteocalcin 
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and carboxyterminal cross-linked telopeptide of type I collagen tended to increase (P = 0.055) as 

dietary Ca increased, which indicated that there was more bone formation than resorption in 

sows as dietary Ca increased. In conclusion, the STTD of Ca in calcium carbonate differed 

among different suppliers, but the STTD of Ca in DCP did not vary depending on different 

suppliers. Tibia, metacarpals, and metatarsals were the best indicators to predict total body bone 

ash. Gestating sows had much lower values for STTD of Ca and P than growing pigs and effects 

of microbial phytase on digestibility of Ca and P were much less predictable in gestating sows 

than in growing pigs. A wide Ca:P ratio decreased ATTD of P, but increased ATTD of Ca and 

retention of Ca and P in sows in late-gestation. Additional research is needed to determine the 

STTD of Ca and P in feed ingredients fed to sows and to elucidate interactions among dietary Ca 

and P, phytase, phytate, and biomarkers in both sows and growing pigs.    

Key words: calcium, phosphorus, microbial phytase, phytate, pig, sows 
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CHAPTER 1: INTRODUCTION 

The concentration of Ca in most plant feed ingredients is low compared with the 

requirement for pigs. Therefore, Ca is mostly provided by calcium carbonate or inorganic 

phosphate. Although Ca is an inexpensive nutrient compared with energy or AA, excess dietary 

Ca may result in reduced P digestibility, feed intake, and growth performance (Stein et al., 2011; 

González-Vega et al., 2016; Merriman et al., 2017). Excretion of P may also increase if dietary 

Ca is provided above the requirement, which may increase environmental pollution (Knowlton et 

al., 2004). Therefore, determination of digestibility of Ca and P in dietary sources of Ca is 

needed to reduce Ca and P excretion by preventing over- or under-formulation of Ca and P. 

Whereas the digestibility of P in most feed ingredients has been reported (NRC, 2012), there is a 

limited number of experiments in which the digestibility of Ca in feed ingredients used in diets 

for pigs was determined. 

Absorption of Ca has been estimated using the total tract digestibility procedure 

(González-Vega et al., 2014; Zhang et al., 2016), and the concept of standardized total tract 

digestibility (STTD) of Ca has been introduced because the STTD values are calculated by 

excluding endogenous Ca (Stein et al., 2016). Once the values for STTD of Ca are evaluated in 

feed ingredients, diets for pigs can be formulated based on digestible Ca similar to the way 

values for digestible P in feed ingredients are used in diet formulation. Digestibility of Ca and P 

may be affected by a number of dietary factors including phytate, exogenous phytase, Ca to P 

ratio, and the concentration of other minerals. Interactions between dietary Ca and P have been 

studied for many years, but effects of dietary level of Ca and P on digestibility of Ca and P, 

growth performance, and bone ash need to be elucidated. 

 Besides dietary factors, values for apparent total tract digestibility (ATTD) of Ca and P 
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are also affected by the physiological status of pigs because growing pigs have greater ATTD of 

Ca and P compared with gestating and lactating sows (Kemme et al., 1997). It is also possible 

that different requirements for Ca and P during different periods of gestation affect the Ca and P 

balance by sows. However, most values for STTD of Ca and P were determined in ingredients 

fed to growing pigs and these values are subsequently applied to all categories of pigs, including 

sows in different gestation periods.  

 Blood biomarkers including carboxyterminal cross-linked telopeptide of type I collagen, 

osteocalcin, and bone-specific alkaline phosphatase have been used to predict bone turnover in 

humans, beef breeder cows, and growing pigs as indicators of Ca and P adequacy in the body 

(Vasikaran et al., 2011; Anderson et al., 2017; Sørensen et al., 2018). Retained Ca and P in the 

body and bone turnover may be estimated from serum concentrations of biomarkers, but this 

relationship has not been demonstrated in sows, and it is not known if blood biomarkers can be 

used to estimate Ca and P status of gestating sows. 

Therefore, the objectives of this dissertation are to determine the STTD of Ca in different 

sources of calcium carbonate and dicalcium phosphate, to determine correlations between 

individual bones in the body and total bone ash to identify the bone that is most representative of 

total body bone ash in growing pig, to compare the STTD of Ca and P and retention of Ca and P 

in diets fed to sows in mid-gestation and growing pigs, to compare the STTD of Ca in calcium 

carbonate and Ca and P balance in diets fed to sows in different gestation periods, and to 

demonstrate the effects of dietary levels of Ca on Ca and P balance and blood biomarkers in late-

gestating sows.   
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CHAPTER 2: UTILIZATION OF CALCIUM AND PHOSPHORUS IN FEED 

INGREDIENTS BY SOWS AND GROWING PIGS: LITERATURE REVIEW  

 

INTRODUCTION 

Data for relative bioavailability of P have been used to determine the available P in 

inorganic P supplements as well as in feed ingredients of plant or animal origin and values have 

usually been determined relative to the availability of P in monosodium phosphate or 

monocalcium phosphate (NRC, 1998). Most values for bioavailability of P in feed phosphates 

are between 85 and 100% (NRC, 1998). Likewise, the relative bioavailability of Ca in most Ca 

supplements that are compared to limestone are between 90 and 100% (Ross et al., 1984; 

Kuznetsov et al., 1987), but there are very few data for the bioavailability of Ca in inorganic 

supplements of Ca (NRC, 2012). Values for relative bioavailability of P are variable among feed 

phosphates that have been used as standards (Petersen et al., 2011), and the relative 

bioavailability of P is always greater than digestibility values because the digestibility of P in the 

standard is less than 100% (Baker et al., 2013). Therefore, use of values for the digestibility of 

Ca and P has been suggested as a more accurate way of evaluating feed ingredients (Fan et al., 

2001; Petersen and Stein, 2006; NRC, 2012; Baker et al., 2013; González-Vega et al., 2014).  

 

DIGESTIBILITY AND RETENTION OF CALCIUM AND PHOSPHORUS BY 

GROWING PIGS 

Digestibility 

 The digestibility of a nutrient represents the amount of that nutrient that disappears from 

the intestinal tract and it is generally assumed that this amount is also available for metabolism 
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after absorption (Stein, 2017). Total tract digestibility is used to determine the digestibility of Ca 

and P because there is limited net absorption or secretion of Ca and P into the large intestine (Fan 

and Sauer, 2002; Bohlke et al., 2005; González-Vega et al., 2014; Zhang et al., 2016; Stein, 

2017). Apparent total tract digestibility (ATTD) values (%) can be calculated using Eq. [2.1] 

(Almeida and Stein, 2010): 

intake - output
ATTD =  × 100

intake
,      [2.1] 

where intake and output of nutrients in feces are expressed as gram per day. 

Values for ATTD are usually influenced by dietary nutrient levels because not only 

dietary nutrients that have not been digested and absorbed, but also nutrients of endogenous 

origin are excreted in the fecal output, which may result in an underestimation of ATTD values if 

pigs are fed a diet that is low in the nutrient that the ATTD is determined for (Fan et al., 2001; 

Zhai and Adeola, 2012). Endogenous losses of Ca and P include Ca and P from saliva juice, 

gastric juice, epithelial intestinal cells, biliary juice, pancreatic juice, and intestinal enzymes and 

mucin (Fan et al., 2001; González-Vega et al., 2013; Létourneau-Montminy et al., 2015). 

Endogenous losses of nutrients from pigs consist of basal endogenous losses and diet specific 

endogenous losses. Basal endogenous losses are considered an inevitable loss from the body that 

is related to dry matter intake (DMI), whereas the diet specific endogenous losses are losses that 

are influenced by dietary components (Stein et al., 2007). Values for ATTD can be corrected for 

either basal endogenous loss or total endogenous loss to calculate standardized total tract 

digestibility (STTD) or true total tract digestibility (TTTD), respectively. Because the STTD or 

TTTD values are not affected by the level of nutrients in the diet, the STTD and TTTD of Ca and 

P are believed to be additive in mixed diets (Table 2.1; Fan and Sauer, 2002; Fang et al., 2007; 

Kwon, 2016; Zhang and Adeola, 2017; She et al., 2018). The additivity of values for ATTD 



7 

 

depends on the concentration of the nutrients in the feed ingredients that are included in the 

mixed diet (Fan and Sauer, 2002; Fang et al., 2007; She et al., 2018). 

Basal endogenous losses of Ca and P have been determined by feeding a Ca-free or P-

free diet (Petersen and Stein, 2006; González-Vega et al., 2015a) and are calculated using Eq. 

[2.2] (adapted from Almeida and Stein, 2010): 

output of Ca or P
Basal endogenous loss =  × 1,000

DMI
,   [2.2] 

where basal endogenous loss is expressed in milligram per kilogram of DMI, DMI in kilogram of 

DMI per day and the fecal output in gram per day. Once the basal endogenous loss has been 

determined, daily basal endogenous loss from pigs fed diets containing feed ingredients of 

interest is calculated as indicated below using Eq. [2.3]: 

Daily basal endogenous loss = basal endogenous loss ÷ 1,000 × DMI, [2.3] 

where daily basal endogenous loss is in gram per day, basal endogenous loss is in milligram per 

kilogram of DMI, and DMI of each pig is in kilogram of DMI per day. The STTD values (%) 

can be calculated from the following Eq. [2.4] (adapted from Almeida and Stein, 2010): 

intake - (output - daily basal endogenous loss)
STTD =  × 100

intake
,  [2.4] 

where intake, output, and daily basal endogenous loss are in gram per day. 

Values for the basal endogenous loss of P that are estimated using a P-free diet are 

relatively constant regardless of BW and an average of a number of experiments indicated that a 

value of 190 mg/kg of DMI is representative of the basal endogenous loss of P (NRC, 2012). 

However, the basal endogenous loss of Ca that is estimated from pigs fed corn-based or 

cornstarch-based diets appears to be more variable and values ranging from 123 to 550 mg/kg of 

DMI have been reported (Table 2.2). Relatively lower values for the basal endogenous loss of Ca 
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and the ATTD of Ca have been observed in pigs fed cornstarch-based diets compared with pigs 

fed corn-based diets (González-Vega et al., 2015a). The increase in values for the basal 

endogenous loss of Ca from pigs fed corn-based diets may be explained by the presence of fiber 

in corn, which may prevent precipitation of Ca in the intestine. In addition, fermentation of fiber 

results in reduced pH in the small intestine, which may also result in increased absorption of Ca 

(González-Vega et al., 2015a). However, more studies are needed to elucidate the factors 

affecting the basal endogenous loss of Ca. 

The total endogenous losses of Ca and P have been determined using a regression 

procedure that regresses digested Ca or P against different levels of intake of that nutrient (Dilger 

and Adeola, 2006; González-Vega et al., 2013; Zhang and Adeola, 2017). The negative y-

intercept of the regression equation represents the endogenous loss and the slope represents the 

value for TTTD. The TTTD values (%) can also be calculated using Eq. [2.5] (Petersen and 

Stein, 2006): 

intake - (output - daily total endogenous loss)
TTTD =  × 100

intake
,  [2.5] 

where intake, output, and daily total endogenous loss are in gram per day. The daily total 

endogenous loss is calculated in the same way as described above for the daily basal endogenous 

loss. The total endogenous losses of Ca ranged from 160 to 314 mg/kg DMI depending on the 

feed ingredients that were used in the diet and on the use of phytase. 

Retention  

 Retention of a nutrient represents the amount of that nutrient that is absorbed and 

metabolized in the body and can be measured by quantifying the amount of nutrients that is 

excreted in fecal and urine outputs. Although the urinary Ca and P excretions give small 

contributions to the total excretion, values for retention of Ca and P may indicate the 
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relationships between the ratio among digested Ca and digested P, dietary Ca and P, and 

requirements for Ca and P (Jongbloed, 1987; Poulsen et al., 2010; Symeou et al., 2014; 

González-Vega et al., 2016b). Calcium and P need to be available in the body at the same time 

because both minerals are needed for bone tissue synthesis. 

Retention values (%) can be calculated from Eq. [2.6] (adapted from Fernández, 1995): 

intake - (fecal output - urine output)
Retention =  × 100

intake
,   [2.6] 

where intake and fecal and urine outputs are in gram per day. 

 

SOURCES OF CALCIUM 

Most dietary Ca is supplied by mineral supplements, but ingredients of animal origin or 

plant origin may also provide dietary Ca. Mineral supplements mostly include Ca carbonate and 

calcium phosphates and concentrations of Ca in Ca supplements range from 15 to 40% (NRC, 

2012). Limestone, dicalcium phosphate (DCP), and monocalcium phosphate (MCP) are the 3 

most commonly used Ca sources in animal diets. Calcium carbonate is a major component of 

ground limestone and contains 40.0% Ca (Table 2.3). Theoretically, based on the total molecular 

mass, DCP (CaHPO4) and MCP [Ca(H2PO4)2] should contain 29.46 and 17.12% Ca, 

respectively, and 22.77 and 26.47% P, respectively. However, most commercial DCP and MCP 

contain less Ca and P compared with expected values, which is a result of impurities in DCP and 

MCP (Baker, 1989; Table 2.4). The reason for the impurities is that the calcium phosphates are 

produced by reacting phosphoric acid (H3PO4) with limestone and impurities from either H3PO4 

or limestone may result in the impurities in DCP and MCP. Therefore, most DCP and MCP in 

North America that are used in animal diets contain approximately 24.8 and 16.9% Ca, 

respectively, and 18.5 and 21.0% P, respectively (Baker, 1989).  
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Cereal grains and co-products of cereal grains and oilseed meals can also provide dietary 

Ca, although most of the plant ingredients are low in Ca (range = 0.02 to 1.17%; NRC, 2012). 

Animal origin feed ingredients including milk products and animal byproducts contain between 

0.20 and 8.28% Ca (NRC, 2012). 

The ATTD, STTD, and TTTD of Ca in feed ingredients have been determined in recent 

years and summarized values are presented in Table 2.5. The digestibility of Ca is greatest in 

animal feed ingredients, followed by mineral supplements and plant feed ingredients, 

respectively. Calcium digestibility in Ca carbonate or ingredients of animal origin is increased by 

use of phytase if the diets are formulated based on corn (González-Vega et al., 2015b; Merriman 

et al., 2016b, Univ. Illinois, 2018). It appears that digestibility of Ca in DCP and MCP is not 

affected by use of phytase (González-Vega et al., 2015b). The reason for this deviation may be 

that Ca from DCP or MCP is bound to phosphate, which results in Ca from DCP or MCP being 

less likely to bind to phytate in diets (Walk, 2016). 

 

DIGESTIBILITY AND RETENTION OF CALCIUM AND PHOSPHORUS BY SOWS 

Digestibility of Ca and P in Diets Fed to Gestating Sows and Lactating Sows 

Values for ATTD of Ca in diets fed to gestating sows ranged from -5.9 to 63.1% and 

ATTD of P ranged from 12.2 to 48.7% depending on the use or not of exogenous phytase and on 

dietary sources of Ca and P (Table 2.6). Dietary Ca ranged from 0.40 to 1.16% and dietary P 

ranged from 0.36 to 1.09%, but it is not clear if there are correlations among dietary Ca and P 

levels, phytate level, and the ATTD of Ca and P in diets fed to gestating sows. However, it 

appears that responses to microbial phytase on the ATTD of Ca and P in diets fed to gestating 

sows is inconsistent and less predictable than in diets fed to growing pigs. 
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Values for ATTD of Ca in diets fed to lactating sows ranged from 19.5 to 63.0% and 

ATTD of P ranged from 19.2 to 72.0% for ATTD of P (Table 2.7). Generally, it appears that 

values for lactating sows are greater than values for gestating sows. As is the case for growing 

pigs, previous studies have demonstrated that values for ATTD of Ca and P are increased by 

inclusion of phytase in the diet for lactating sows and the digestibility of P increases if inorganic 

sources of P are used. 

Sows in their first parity may need more Ca and P compared with multiparous sows 

because it is possible that they are still growing. Therefore, parity of sows may affect the 

digestibility of Ca and P because first parity sows need Ca and P not only for maintenance, fetus 

development, or recovery, but also for growth (Bikker and Blok, 2017). Few studies have 

demonstrated the effects of parity on the digestibility of Ca and P in gestating and lactating sows. 

Values for ATTD of P were greater if gestating sows were in their fourth parity compared with 

their third parity, but the ATTD of Ca was not affected by parity (Hanczakowska et al., 2009). 

During lactation, the ATTD of Ca and P was not different between parity 1 and parity 8 sows 

(Kemme et al., 1997b; Hanczakowska et al., 2009).  

Comparison of Ca and P Digestibility in Sows and Growing Pigs 

The STTD of Ca and P in most feed ingredients have been determined in recent years, 

but most values were determined in ingredients fed to growing pigs and these values are 

subsequently applied to all categories of pigs, including sows. It has been demonstrated that 

digestibility of energy and some nutrients are affected by the physiological state of the animal 

and sows usually have greater digestibility values than growing pigs (Le Goff and Noblet, 2001; 

Casas and Stein, 2017). Absorption and retention of Ca and P also increase during pregnancy in 

humans and rats compared with non-pregnant periods because of an increased need for maternal 
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body and fetus Ca and P (Institute of Medicine, 1990; Pérez et al., 2008; Kovacs, 2016). 

However, pig data have shown that ATTD of Ca and P in growing pigs are greater than in 

gestating and lactating sows when growing pigs were fed the same diet as the sows (Kemme et 

al., 1997a; Lee et al., 2018). Although the ATTD of Ca is not affected by dietary Ca 

concentration if a diet contains between 55 and 173% of the requirement for Ca (Stein et al., 

2011), it is possible that a combination of different requirements for Ca and P and different ratios 

between Ca and P may result in differences in the digestibility of Ca and P.  

Differences in feed intake between gestating sows and growing pigs may affect the 

ATTD values, but it is not likely that they are the main reason for the difference because feed 

intake of sows does not affect digestibility of Ca and P (Lee et al., 2018). Greater amount of 

endogenous losses from sows than from growing pigs may also affect ATTD of Ca and P, but 

there are no data comparing endogenous losses of Ca and P by sows and growing pigs. 

It is possible that digestibility of Ca and P in sows is affected by the physiological stage 

of sows. The blood level of estrogen is related to Ca metabolism in the body (Heaney, 1990; 

Ross et al., 2011; Harmon et al., 2016), and estrogen increases in the blood during late gestation 

and during post-parturition to support development of mammary glands (Kensinger et al., 1982). 

Serum parathyroid hormone (PTH) and calcitriol that upregulate the para-cellular absorption of 

Ca also increase in pregnant women throughout pregnancy and further increases after parturition 

(Ardawi et al., 1997). Sows in mid- or late- gestation have reduced ATTD of Ca and P compared 

with lactating sows (Kemme et al., 1997a; Jongbloed et al., 2004; Männer and Simon, 2006; 

Nyachoti et al., 2006). Furthermore, the ATTD of Ca and P is reduced in mid-gestation 

compared with late-gestation (Kemme et al., 1997a; Jongbloed et al., 2004; Nyachoti et al., 2006; 

Jongbloed et al., 2013). Therefore, it is possible that an increase in estrogen results in an increase 
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in the digestibility of Ca and P by sows in late-gestation or lactation. However, research is 

needed to investigate if day of gestation and lactation influences basal endogenous losses and 

STTD of Ca and P in sows. 

Calcium and P Retention by Sows 

Considerably lower amounts of Ca and P relative to intake were retained by sows in 

early-, mid-, or late-gestation (Everts et al., 1998; Darriet et al., 2017). It is possible that the Ca 

and P needs in the body change depending on the stage of gestation. Very little Ca and P is 

needed for fetus development by sows in early- to mid-gestation compared with sows in late-

gestation (Bikker and Blok, 2017). Furthermore, sows may not need nutrients for growth and 

may not need a high amount of Ca and P for maintenance because they have accumulated a large 

amount of Ca and P in the body over a long period of time. However, more research is needed to 

demonstrate if there is a relationship between Ca and P retention and dietary components or the 

reproductive status of the sow. 

First parity sows are expected to retain more dietary Ca and P in the body compared with 

multiparous sows because of maternal growth, but very limited data are available to quantitate 

these effects. Based on computer models, it was proposed that more Ca and P relative to body 

size need to be retained in first parity sows compared with second or third parity sows (Everts et 

al., 1998), and Bikker and Blok (2017) suggested different Ca and P requirements for gestating 

and lactating sows in different parities. 

 

FACTORS AFFECTING DIGESTIBILITY AND RETENTION OF CALCIUM IN PIGS 

The digestibility or retention of Ca by growing pigs may be influenced by dietary 

phytate, exogenous phytase, Zn supplementation, sodium chloride, diet composition, 
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supplemental fat, or organic acids (Jongbloed et al., 2000; González-Vega et al., 2015a; 

Merriman, 2016; Merriman et al., 2016a; Blavi et al., 2017). Metabolism of Ca and P in the body 

is regulated by hormones including PTH and calcitonin, and estrogen (Pérez et al., 2008). 

Regulation in the Body 

Calcium in soluble or ionic forms is absorbed by both passive diffusion (paracellular) and 

active transport (transcellular) and the primary route for Ca absorption depends on dietary Ca 

levels (Bronner, 2003). Absorption of Ca by active transport in the small intestine is regulated by 

calcitriol that is the active form of vitamin D (1,25-dihydroxycholecalciferol) and the hormones 

including calcitonin and PTH (Crenshaw, 2001). If blood Ca concentration, i.e., ionic Ca++, is 

low, PTH is released from the parathyroid glands, which stimulates production of calcitriol in the 

kidney, and the calcitriol then binds to the vitamin D receptor in the intestinal tract to increase Ca 

absorption from the small intestine. The efflux of Ca from bones, and the reabsorption of Ca in 

the kidney are also increased by PTH, and combined, these effects result in a greater blood Ca 

concentration (Crenshaw, 2001; Molina, 2013; Blaine et al., 2015). Calcitonin, however, is 

released from the thyroid glands in response to high blood Ca level and the overall effect is to 

decrease blood Ca level by reducing active transport of Ca from the intestine, inhibiting 

reabsorption of Ca from the kidney, and storing Ca in the skeleton (Crenshaw, 2001; Molina, 

2013). However, recent data indicate that the overall effect of calcitonin on regulation of 

intestinal absorption of Ca is limited (Stein et al., 2011). 

Passive diffusion between cells is the primary route of Ca absorption if pigs are fed a diet 

containing Ca at or above the requirement, but active transport across the cell is the primary 

route if dietary Ca is below the requirement (González-Vega et al., 2016a; Lagos, 2018). It 

appears that the total absorption of Ca is not regulated by the concentration of Ca in the diet, but 
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retention of Ca is regulated by mechanisms of excretion and reabsorption of Ca by the kidney. 

Therefore, growing pigs tend to absorb a large amount of dietary Ca if they are fed above the 

requirement and subsequently excrete the excess Ca in the urine (Stein et al., 2011). 

Bone Turnover Markers  

Bone turnover is a continuous process that is remodeling bone by forming and removing 

bone tissue (also referred to as resorption) and this process is associated with osteocytes, 

osteoblasts, and osteoclasts for bone maintenance, formation, and resorption, respectively 

(Seibel, 2005). Therefore, several bone turnover markers that are associated with bone 

metabolism have been used to diagnose bone-related medical conditions in humans (Seibel, 

2005; Vasikaran et al., 2011). Osteoblasts are bone-forming cells that synthesize cross-linked 

collagens and matrix proteins including osteocalcin and osteopontin, which produce alkaline 

phosphatase to mineralize the bone (Robey et al., 1993; Bassi et al., 2011; Niedźwiedzki and 

Filipowska, 2015). Therefore, the activity of osteoblasts can be measured by analyzing blood or 

urine for osteocalcin or bone-specific alkaline phosphatase (BAP), or procollagen peptides 

(Seibel, 2005; Vasikaran et al., 2011). Osteoclasts are cells that digest old bone by secreting 

acids and a collagenase (Bord et al., 1996). As bone undergoes resorption, there are several 

byproducts and activity of osteoblasts can also be estimated by analyzing blood or urine for 

inorganic P, pyridinoline, hydroxyproline, hydroxylysine-glycosides, or collagen cross-linked 

telopeptide (Seibel, 2005; Vasikaran et al., 2011).  

Several experiments have been conducted with pigs to demonstrate relationships between 

bone turnover markers and dietary Ca, P, and vitamin D (Larsen et al., 2000; Weber et al., 2014; 

Sørensen et al., 2018) or parity of gestating sows (Weber et al., 2014; Schmidt et al., 2018).  

In growing pigs, higher concentration of Ca in diets relative to requirement estimates 
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decreased plasma carboxyterminal cross-linked telopeptide of type I collagen (CTX-I), which is 

one of the collagen cross-linked telopeptides that is derived from bone resorption, but alkaline 

phosphatase and hydroxyproline levels were not affected by dietary Ca (Larsen et al., 2000). 

Osteocalcin level increased if concentration of P increased in diets and because of lower 

osteoblast activity, serum BAP decreased as pigs became older (Sørensen et al., 2018). Serum 

CTX-I decreased with increasing P concentrations in diets, which increased the osteocalcin to 

CTX-I ratio (Sørensen et al., 2018). Serum BAP (Liesegang et al., 2005; Verheyen et al., 2007; 

Lauridsen et al., 2010) and osteocalcin (Lauridsen et al., 2010; Weber et al., 2014; Schmidt et al., 

2018) concentrations were greater by sows in early-gestation compared with sows in later 

gestation or lactation, which may be a result of an increase in the requirement for Ca and P in 

late gestation and lactation compared with early gestation. Gilts or sows in low parities had 

greater parameters for bone resorption and formation compared with sows in greater parities 

because they were growing (Weber et al., 2014; Schmidt et al., 2018). It appears that biomarkers 

may be used to predict bone metabolism in both growing pigs and sows and that there are certain 

correlations between biomarkers and dietary Ca and P.  

Calcium and P Interactions  

Excess dietary Ca reduces P digestibility and growth performance of pigs (Stein et al., 

2011; González-Vega et al., 2016b; Merriman et al., 2017; Wu et al., 2017; Lagos, 2018). 

Calcium may be oversupplied to swine diets because limestone is less expensive than other feed 

ingredients and limestone is sometimes used as a carrier in vitamin and mineral premixes and 

nutritional additives or as a flow agent in feed mills. This may lead to greater Ca concentrations 

in diets compared with expected values (Walk, 2016; Wu et al., 2018). Dietary P level is not 

likely affecting Ca digestibility, but retention of Ca is reduced if digested P is not adequate 
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(Létourneau-Montminy et al., 2014; González-Vega et al., 2016a) because Ca and P can be 

retained in the body only if both Ca and P are available at the same time (Crenshaw, 2001). 

Unlike P digestibility, Ca digestibility is unlikely to be affected by Ca or P concentrations in 

diets if Ca and P are from inorganic sources (Stein et al., 2006; González-Vega et al., 2016a). 

Calcium absorption is negatively affected by phytate-P if exogenous phytase is not supplemented 

in diets (Misiura et al., 2018), which likely is a result of dietary Ca being bound to phytate, 

resulting in formulation of a Ca-phytate complex, which reduces Ca digestibility. However, Ca 

from Ca carbonate or animal or plant sources more actively binds to phytate compared with Ca 

from DCP or MCP (Walk, 2016). 

Phytate and Exogenous Phytase  

Phytic acid or phytate that consists of an inositol ring and 6 phosphates that are attached 

to the inositol ring by ester bonds is a primary form for storage of P in grains and oilseeds. As a 

consequence, most plant feed ingredients that are commonly used in swine diets have high 

concentrations of phytate-bound P relative to total P (Table 2.8). Pigs have low utilization of 

phytate-bound P because phytase is not produced in sufficient quantities by the body to 

hydrolyze the ester bonds in phytate and thus release the P. Phytate may also be bound to 

positively charged cations including Ca++ because of the negatively charged reactive sites on the 

phytate molecule, which results in chelated mineral-phytate compounds that may precipitate in 

the intestinal tract (Nelson and Kirby, 1987; González-Vega et al., 2015b). Calcium from plant 

ingredients as well as Ca from Ca carbonate tend to bind to phytate to form the Ca-phytate 

complex (Selle et al., 2009; González-Vega et al., 2015b).  

Dietary phytate has a negative correlation with the digestibility of Ca and P by growing 

pigs (Almaguer et al., 2014; Misiura et al., 2018), and use of microbial phytase in diets for pigs 
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has increased Ca digestibility (Almeida et al., 2013; Rodríguez et al., 2013; González-Vega et 

al., 2015b). The quantity of phytase that is added to swine diets is usually between 250 and 1,000 

phytase units/kg of diet although up to 2,500 units may sometimes be used (Walk, 2016). 

Efficacy of dietary exogenous phytase depends on its substrate, phytate, in the diets (Selle et al., 

2009; Adeola and Cowieson, 2011), and the efficacy of phytase is reduced by a wide Ca to P 

ratio (Lei et al., 1994; Qian et al., 1996; Brady et al., 2002). Supplementary Zn may also reduce 

the efficacy of phytase, but effects of microbial phytase on ATTD and STTD of Ca was not 

affected by ZnO in growing pigs (Blavi et al., 2017). 

Physiological Status and Exogenous Phytase 

Efficacy of phytase may be influenced by the physiological status of pigs and it may be 

greater in lactating sows compared with growing-finishing pigs, late-gestating sows, weanling 

pigs, and mid-gestating sows (Kemme et al., 1997a; Sulabo, 2004). 

During gestation, it is possible that reduced feed intake and the longer gastrointestinal 

tract in sows compared with growing pigs affect the retention time and, therefore, the efficacy of 

phytase to release P and Ca may be low. The activity of phytase is maximized if pH is between 2 

and 5, depending on the phytase used (Tomschy et al., 2002; Kim et al., 2006; Selle and 

Ravindran, 2008). Therefore, the main site of activity of exogenous phytase is the stomach and 

the upper part of the small intestine (Jongbloed et al., 1992). Gestating sows may have lower pH 

compared with growing pigs because of lower feed allowance and longer intervals between 

meals, which theoretically should result in greater activity of phytase (Wang et al., 2003; 

Blaabjerg et al., 2011). However, the response to phytase appears to be less if phytase is used in 

diets for gestating sows compared with growing pigs (Kemme et al., 1997a), and lactating sows 

have a greater response to exogenous phytase than gestating sows despite the much greater feed 
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intake by lactating sows (Kemme et al., 1997a; Nyachoti et al., 2006; Jang et al., 2014). It, 

therefore, appears that there are factors determining the response to phytase that have not yet 

been elucidated. 

Other Factors Influencing Ca Digestibility 

Absorption of Ca or P may be decreased if insoluble fiber or phytate is included in the 

diet, which results in less transit time (Nortey et al., 2007; Hill et al., 2008). Likewise, the ATTD 

of Ca in Ca carbonate decreased if inclusion rate of cellulose increased from 4% to 12% in the 

diet (Son and Kim, 2015). Thus, it appears that insoluble fiber, which is largely unfermentable, 

reduces ATTD of Ca. However, Ca and P absorption may increase if fermentable dietary fiber is 

used. Calcium, Na, K, and Mg absorption in the cecum increased in rats fed a high fiber diet 

compared with a fiber-free diet and this was explained by an increase in mineral absorption via 

diffusion because of the lower intestinal pH, which was a result of fiber fermentation and 

synthesis of volatile fatty acids (Demigné and Rémésy, 1985). Cecal pH decreased with 

increased volatile fatty acids, and absorption of Ca, P, and Mg increased if inulin was included in 

diets fed to rats (Levrat et al., 1991). Likewise, use of corn and corn germ meal rather than 

cornstarch increased ATTD of Ca and P in pigs (González-Vega et al., 2015a), which may also 

be a result of reduced pH in the intestinal tract of pigs. Supplementation of organic acids 

increased the ATTD of Ca and P in growing pigs (Radcliffe et al., 1998; Kemme et al., 1999; 

Jongbloed et al., 2000), and lactation sows (Liu et al., 2014), which further indicated that a 

reduced intestinal pH tended to reduce chelation of minerals, which resulted in greater solubility 

and absorption (Ravindran and Kornegay, 1993; Kil et al., 2011). Particle size of Ca carbonate 

may affect the digestibility of Ca because reduced particle size increases in vitro solubility 

(Zhang and Coon, 1997). In poultry, finer particle size of Ca carbonate reduces the transit time 



20 

 

and, therefore, reduces the solubility in the gizzard compared with a coarser particle size (Rao 

and Roland, 1990; Zhang and Coon, 1997). Transit time and pH in the gastrointestinal tract of 

poultry and the presence of a gizzard are factors that influence digestibility of nutrients (Svihus, 

2014; Li et al., 2015) and poultry data are, therefore, not always representative of pigs. The 

particle size of Ca carbonate did not influence the relative bioavailability of Ca, the digestibility 

and retention of Ca, or growth performance in growing pigs (Ross et al., 1984; Merriman and 

Stein, 2016). The reason for the difference between broiler chickens and pigs may be that pigs 

can digest and absorb Ca along the gastrointestinal tract until the end of the ileum, whereas 

poultry have a relatively shorter small intestine and much greater digesta viscosity compared 

with pigs. Fatty acids may also form complexes between Ca and fat in the gastrointestinal tract, 

which may reduce the digestibility Ca and specifically saturated fatty acids increase the 

formation of complexes (Mattson et al., 1979). However, values for ATTD of Ca were not 

affected if choice white grease or plant oils were used (Steiner et al., 2006; González-Vega et al., 

2015a; Merriman et al., 2016a). In contrast, the ATTD of Ca may be increased by addition of 

tallow or plant oils to diets for pigs (Merriman et al., 2016a), which may be a result of reduced 

passage rate of digesta in the small intestine of pigs fed diets containing increased concentrations 

of fat. 
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CONCLUSIONS 

In recent years, values for STTD of Ca and P in feed ingredients fed to growing pigs have 

been determined because STTD values are believed to be additive in a complete diet. Therefore, 

use of STTD may result in the most accurate diet formulations. There is, however, a lack of 

information if the STTD of Ca is different among different suppliers of inorganic sources 

without or with exogenous phytase fed to growing pigs. It is also not known if values for the 

STTD of Ca and P can be applied to diet formation for sows in different status. 

Calcium and P utilization for bone turnover in the body may be estimated by using blood 

biomarkers, but there is a lack of information if the blood biomarkers also can be used for 

gestating sows. There is a need for further research to determine Ca digestibility in feed 

ingredients and to demonstrate the interactions among dietary Ca and P, phytase, and blood 

biomarkers in diets fed to gestating sows and growing pigs. 
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TABLES 

Table 2.1. Additivity of values for apparent total tract digestibility (ATTD), standardized total tract digestibility (STTD), and true 

total tract digestibility (TTTD) of Ca and P in mixed diets fed to growing pigs 

Feed ingredients in diets ATTD 
 

STTD 
 

TTTD 

Measured Predicted Diff. SE  Measured Predicted Diff. SE 
 

Measured Predicted Diff. SE 

Calcium 
    

 
         

Limestone, 

dicalcium phosphate1 
69.3 68.1 1.3b -  - - - - 

 
73.7 72.7 1.1 - 

Phosphorus 
    

 
         

Barley, canola meal2 22.8 23.8 -1.0 -  - - - - 
 

- - - - 

Wheat, pea2 45.1 38.1 7.0a -  - - - - 
 

- - - - 

Soybean meal, oat, rough rice, 

broken rice, corn3 
15.5 27.3 -11.8a 5.3  - - - - 

 
40.4 42.0 -1.6 3.9 

Soybean meal, buckwheat, 

pea,faba bean, sorghum3 

21.2 29.9 -8.7a 4.9  - - - - 
 

42.3 41.0 1.3 3.0 

Wheat, soybean meal4 45.1 41.3 3.8a 1.6  49.7 47.8 1.9 1.6 
 

- - - - 

Corn, soybean meal5 40.9 42.8 1.9 3.0  44.7 49.0 -4.3 3.0 
 

- - - - 

Corn, soybean meal, 

canola meal5 
41.0 37.0 -4.0a 1.1  44.1 42.9 1.3 1.1 

 
- - - - 

aMeasured and predicted values differ, P < 0.05. 

bMeasured and predicted tend to be different, 0.05 < P < 0.10. 

1Zhang and Adeola, 2017.   
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Table 2.1. (Cont.) 

2Fan and Sauer, 2002. 

3Fang et al., 2007 

4Kwon, 2016. 

5She et al., 2018. 
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Table 2.2. Estimates of basal endogenous loss and total endogenous loss of Ca by growing pigs 

  

Reference Initial 

BW, kg 

Endogenous loss 

of Ca, mg/kg DMI 

Main ingredients 

Ca-free diet feeding method (basal endogenous loss)  

González-Vega et al. (2015a) 

 

19.2 220 Cornstarch 

19.4 396 Corn 

González-Vega et al. (2015b) 17.7 123 Cornstarch 

Merriman and Stein (2016) 15.4 329 Corn 

Merriman (2016) 14.9 550 Corn 

Blavi et al. (2017) 15.4 430 Corn 

Santana et al. (2017) 20.5 140 Corn, soybean meal 

(1.25% soybean meal)  

Regression method (total endogenous loss)  

Zhang and Adeola (2017) 

 

20.0 207 Corn, corn gluten meal, limestone 

20.0 316 Corn, corn gluten meal, 

dicalcium phosphate 

20.0 264 Corn, corn gluten meal, 

limestone, dicalcium phosphate 

González-Vega et al. (2013) 

 

16.7 160 Cornstarch, canola meal 

16.7 189 

(with phytase) 

Cornstarch, canola meal 
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Table 2.3. Total molecular weight of Ca carbonate, dicalcium phosphate (DCP), monocalcium 

phosphate (MCP) and percentage composition of chemically pure inorganic supplements 

  Total molecular mass (g/mol) Percentage (%) 

Calcium carbonate [CaCO3] 

 
Ca × 1 40.08 40.04 

C × 1 12.01 12.00 

O × 3 48.00 47.96 

Total 100.09 100.00 

DCP [CaHPO4] 
 

 
Ca × 1 40.08 29.46 

H × 1 1.01 0.74 

P × 1 30.97 22.77 

O × 4 64.00 47.04 

Total 136.06 100.00 

MCP [Ca(H2PO4)2] 

 
Ca × 1 40.08 17.12 

H × 4 4.03 1.72 

P × 2 61.95 26.47 

O × 8 128.00 54.69 

Total 234.05 100.00 
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Table 2.4. Impurities in commercial dicalcium phosphate (DCP) and monocalcium phosphate 

(MCP)1,2 

Component Chemical formula Limestone DCP 

(18.5% P) 

MCP 

(21.0% P) 

Calcium carbonate CaCO3 91.8 6.74 6.00 

DCP and MCP 

 

 

  
Monocalcium phosphate Ca(H2PO4)2∙H2O - 14.19 60.98 

Dicalcium phosphate CaHPO4 - 26.42 12.54 

Hydrated dicalcium phosphate CaHPO4∙H2O - 34.65 - 

Others 
 

 
  

Silica SiO2 3.5 0.15 0.13 

Calcium fluoride CaF2 - 0.32 0.44 

Sodium phosphate NaH2PO4∙2H2O - 0.54 0.61 

Phosphoric acid H3PO4 - 0.80 1.00 

Water H2O - 0.80 1.00 

Aluminum phosphate AlPO4 - 2.21 2.48 

Alumina Al2O3 2.5 - - 

Ferrous phosphate FePO4∙2H2O - 2.65 2.98 

Calcium sulfate CaSO4∙H2O - 3.51 3.95 

Magnesium oxide CaMg(CO3)2 2.2 - - 

Magnesium phosphate, dibasic Mg(H2PO4)2∙4H2O - 7.02 7.89 

Total   100.00 100.00 100.00 

Nutrient composition3     

Calcium Ca 38.5 24.8 16.9 
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Table 2.4. (Cont.)     

Phosphorus P - 18.8 21.5 

1Values for limestone are estimated from Spiropoulos (1985) and unpublished data from 

the University of Illinois (2017). 

2Values for DCP and MCP are adapted from Baker (1989). 

 3Values are from NRC (2012).  



28 

 

Table 2.5. Apparent total tract digestibility (ATTD), standardized total tract digestibility 

(STTD), and true total tract digestibility (TTTD) of Ca in feed ingredients without and with 

phytase added to the diet fed to growing pigs 

Item, % ATTD of Ca 
 

STTD of Ca  TTTD of Ca 

Supplementation of phytase1 - + 
 

- +  - + 

Mineral supplements         

Monocalcium phosphate2 83 83 
 

86 86  - - 

Dicalcium phosphate2, 3 73 76 
 

77 79  76 - 

Calcium carbonate2, 3, 4, 5, 6, 7, 8, 9 68 74 
 

71 77  70 - 

Calcium carbonate without fat source6 52 - 
 

- -  - - 

Lithothamnium calcareum2 63 66 
 

65 69  - - 

Plant feed ingredients 
     

   

Canola meal7, 8, 10 41 - 
 

45 70  47 70 

Soybean meal7, 8, 11 53 - 
 

78 -  - - 

Sugar beet co-product2 66 63 
 

68 65  - - 

Sunflower meal8 22 - 
 

- -  - - 

Animal feed ingredients 
     

   

Meat and bone meal12 75 - 
 

77 82  - - 

Meat meal12 75 - 
 

77 86  - - 

Fish meal13 62 71 
 

65 73  - - 

Poultry meal12 85 74 
 

82 76  - - 

Poultry by product meal12 81 84 
 

88 87  - - 

Skim milk powder7 95 -  97 -  - - 
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Table 2.5. (Cont.)         

Whey powder7 97 - 
 

99 -  - - 

Whey permeate7 61 - 
 

63 -  - - 

1Phytase level varies from 500 to 1,500 phytase units/kg diet. 

2González-Vega et al. (2015b). 

3Zhang and Adeola (2017). 

4Blavi et al. (2017). 

5Merriman and Stein (2016). 

6Merriman et al. (2016a). 

7Unpublished data from the University of Illinois. 

8Zhang et al. (2016). 

9Kwon and Kim (2017). 

10González-Vega et al. (2013). 

11Bohlke et al. (2005). 

12Merriman et al. (2016b). 

13González-Vega et al. (2015a). 
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Table 2.6. Digestibility of Ca and P in diets without or with microbial phytase fed to gestating sows 

Ref.1 d of  

gestation 

 Main ingredients Inorganic 

sources for 

Ca and P2 

 Dietary level  ATTD 

  Ca P Phytase  Ca P 

1 

 

60  Wheat middlings 

Corn 

Tapioca meal 

Peas 

Potato protein 

Soybean extracted 

Sunflower meal extracted 

CC  0.61 0.49 -  13.4 13.7 

  0.63 0.48 500 (Natuphos®)  9.4 20.4 

90   0.61 0.49 -  23.8 18.3 

  0.63 0.48 500 (Natuphos®)  23.4 33.3 

2 70  Barley 

Tapioca 

Soybean extract 

Sunflower seed extract 

Beet pulp 

Soybean hulls 

 

CC 

MCP 

 

 0.64 0.52 -  16.7 16.3 

 CC 

 

 0.52 0.39 -  18.6 13.9 

  0.57 0.39 750  

(RONOZYME® P) 

 23.8 22.3 

  0.65 0.40 1,000 

(RONOZYME® P) 

 20.4 22.3 

100  CC 

MCP 

 

 0.64 0.52 -  27.5 26.7 

 CC  0.52 0.39 -  28.1 21.7 

  0.57 0.39 750 

(RONOZYME® P) 

 34.2 32.5 

  0.65 0.40 1,000 

(RONOZYME® P) 

 29.3 32.0 

3 48.5  Corn 

Soybean meal 

Soybean hulls 

Wheat bran 

CC 

MCP 

 

 0.69 0.47 -  22.3 20.4 

  0.71 0.36 500 

(Peniophora phytase) 

 23.9 22.5 
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Table 2.6. (Cont.)          

 
 

  
 0.71 0.36 750 

(Peniophora phytase) 

 26.2 23.1 

 
 

 0.71 0.36 1,000 

(Peniophora phytase) 

 29.1 29.5 

4 90  Corn 

Soybean meal 

CC 

DCP 

 1.05 0.63 -  63.1 12.2 

  0.60 0.49 -  40.2 19.0 

  0.65 0.51 500 (Phyzyme®)  52.3 25.8 

  0.74 0.49 1,000 (Phyzyme®)  51.3 21.6 

 Wheat 

Barley 

Soybean meal 

Canola meal 

CC 

DCP 

 0.89 0.66 -  49.4 19.9 

  0.83 0.59 -  50.1 16.1 

  0.77 0.66 500 (Phyzyme®)  60.6 39.6 

  0.69 0.58 1,000 (Phyzyme®)  44.9 24.4 

5 71  Corn 

Oat 

Sugar beet 

Soybean meal 

Rapeseed meal 

CC 

DCP 

 

 0.78 0.46 -  31.6 42.6 

 CC  0.61 0.37 -  23.5 34.2 

  0.61 0.37 125 (New Phytase; 

AB Enzymes) 

 31.8 45.6 

  0.61 0.37 250 (New Phytase; 

AB Enzymes) 

 36.8 48.5 

  0.61 0.37 375 (New Phytase; 

AB Enzymes) 

 37.2 48.3 

  0.61 0.37 10,000 (New Phytase; 

AB Enzymes) 

 40.2 48.7 

6 70  Barley 

Tapioca 

Soybean extract 

Corn gluten meal 

CC 

MCP 

 

 0.58 0.52 -  18.5 22.0 
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Table 2.6. (Cont.)  

    CC 

 

 0.53 0.40 -  25.8 22.3 

     0.40 0.40 125 (OptiPhos®)  25.7 32.2 

    0.50 0.40 250 (OptiPhos®)  28.9 31.8 

     0.60 0.40 1,000 (OptiPhos®)  26.3 30.3 

100  Sunflower seed extract 

Dried beet pulp 

Palm kernel expeller 

Soybean hulls 

Rapeseed meal 

CC 

MCP 

 

 0.58 0.52 -  25.5 29.6 

  CC  0.53 0.40 -  28.6 22.1 

  0.40 0.40 125 (OptiPhos®)  34.3 38.3 

   0.50 0.40 250 (OptiPhos®  36.5 38.2 

  0.60 0.40 1,000 (OptiPhos®)  32.9 40.0 

7 75  Corn 

Soybean meal 

CC 

DCP 

 

 0.75 0.61 -  26.4 29.6 

  0.64 0.51 -  21.2 22.6 

  0.64 0.51 500 (Natuphos®)  23.6 27.7 

8 108  Barley 

Wheat 

Field pea 

Corn DDGS 

-  0.88 0.69 500 (Phyzyme® XP)  25.2 41.4 

9 90  Corn 

Soybean meal 

 

CC 

MCP 

 

 0.78 0.68 -  31.8 40.1 

  0.81 0.68 -  21.7 31.4 

  0.84 0.69 -  16.4 28.4 

10 35  Corn-SBM CC 

DCP 

 

 0.65 0.60 500 (®quantumblue)  -5.9 20.5 
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Table 2.6. (Cont.)           

 
  Corn 

Soybean meal 

Full-fat rice bran 

CC  0.66 0.98 500 (®quantumblue)  4.6 13.9 

 
  Corn 

Soybean meal 

Defatted rice bran 

CC  1.16 1.09 500 (®quantumblue)  20.7 19.1 

1Ref. list = 1. Kemme et al. (1997a); 2. Jongbloed et al. (2004); 3. Männer and Simon (2006); 4. Nyachoti et al. (2006); 5. 

Hanczakowska et al. (2009); 6. Jongbloed et al. (2013); 7. Jang et al. (2014); 8. Nasir et al. (2014); 9. Darriet et al. (2017); 10. Lee et 

al., 2018. 

2CC = Ca carbonate; DCP = dicalcium phosphate; MCP = monocalcium phosphate.  
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Table 2.7. Digestibility of Ca and P in diets without or with phytase fed to lactation sows 

Ref.1 d of 

lactation 

 Main ingredients Inorganic 

sources for Ca 

and P2 

 Dietary level  ATTD 

 Ca P Phytase  Ca P 

1 10  Wheat middlings 

Corn 

Tapioca meal 

Peas 

Potato protein 

Soybean extracted 

Sunflower meal extracted 

CC 

 

 0.61 0.49 -  29.7 19.4 

  0.63 0.48 500 

(Natuphos®) 

 26.4 40.8 

24   0.61 0.49 -  31.2 19.2 

  0.63 0.48 500 

(Natuphos®) 

 36.7 41.2 

2 11  Barley 

Tapioca meal 

Soybean meal 

Peas 

Rapeseed meal 

Sunflowerseed meal 

CC  0.30 0.40 -  31.1 29.0 

   0.42 0.40 400 (Natuphos®)  45.2 46.2 

18   0.30 0.40 -  39.8 31.7 

   0.42 0.40 400 (Natuphos®)  47.6 45.1 

11  Barley 

Corn 

Soybean meal 

 

CC 

MCP 

 0.35 0.37 -  40.7 32.9 

   0.64 0.50 -  38.5 38.9 

18   0.35 0.37 -  42.5 34.5 

   0.64 0.50 -  42.0 41.9 

3   Corn 

Soybean meal 

CC 

DCP 

 0.82 0.74 -  - 59.0 

  CC 

DCP 

 0.77 0.54 500 

(Natuphos®) 

 - 72.0 

4 14  Barley 

Tapioca 

Soybean extract 

Peas 

Corn gluten feed 

CC 

MCP 

 0.80 0.68 -  24.6 34.9 
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Table 2.7. (Cont.)         

    CC  0.54 0.51 -  19.5 21.4 

     0.62 0.50 750 

(Peniophora phytase) 

 29.4 36.8 

     0.69 0.50 1,000 

(Peniophora phytase) 

 28.8 38.1 

     0.82 0.50 10,000 

(Peniophora phytase) 

 29.0 44.9 

5 17  Barley 

Corn 

Soybean meal 

CC 

MCP 

 0.91 0.59 -  58.8 47.9 

  0.95 0.35 -  59.6 40.7 

  0.95 0.35 500 

(Consensus phytase) 

 60.6 55.0 

  0.95 0.35 1,000 

(Consensus phytase) 

 63.0 62.6 

6 18  Corn 

Soybean meal 

CC 

DCP 

 0.71 0.50 -  47.1 25.1 

  0.71 0.45 -  46.9 23.3 

  0.78 0.44 500 

(Phyzyme®) 

 59.1 38.1 

  0.64 0.45 1,000 

(Phyzyme®) 

 47.2 40.3 

 Wheat 

Barley 

Corn 

SBM 

CC 

DCP 

 0.57 0.71 -  54.0 30.3 

  0.56 0.58 -  49.8 32.6 

  0.44 0.58 500 

(Phyzyme®) 

 43.0 42.1 

  0.55 0.54 1,000 

(Phyzyme®) 

 50.4 46.7 

7 23  Barley 

Oat 

Wheat 

Rapeseed extract 

Soybean extract 

Dried grass 

CC 

DCP 

 0.84 0.64 -  51.3 45.3 

   CC  0.82 0.45 -  50.4 42.3 

   CC  0.83 0.46 500 (RONOZYME® P)  52.6 49.7 
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   Triticale 

Oat 

Rye 

Rapeseed extract 

Garden pea 

Soybean extract 

Dried grass 

CC 

DCP 

 0.86 0.61 -  53.4 50.8 

   CC  0.83 0.42 -  54.1 47.1 

   CC  0.83 0.42 500 (RONOZYME® P)  56.9 56.4 

8 17.5  Barley 

Tapioca 

Soybean extracted 

Peas 

Corn gluten meal 

Sunflower seed extracted 

Rapeseed meal 

CC  0.50 0.45 -  38.6 28.6 

 CC  0.50 0.46 125 (OptiPhos®)  43.4 46.6 

 CC  0.59 0.46 250 (OptiPhos®  41.0 47.6 

 CC  0.67 0.45 500 (OptiPhos®)  42.5 48.6 

 CC  0.80 0.46 1,000 (OptiPhos®)  38.4 48.3 

 CC 

MCP 

 0.77 0.63 -  32.9 35.8 

9 11  Corn 

Soybean meal 

 

CC 

DCP 

 0.64 0.54 -  27.3 34.8 

  0.64 0.54 500 (Natuphos®)  37.2 46.3 

  0.75 0.65 -  32.4 35.4 

10 20  Corn 

Wheat bran 

Full fat soybean, Soybean meal, Fish 

meal 

CC 

DCP 

 0.82 0.62 -  43.9 34.7 

11 8 

 

 Wheat 

Soybean meal 

Field pea 

corn DDGS 

Canola meal 

CC 

DCP 

 1.17 0.78 -  31.6 34.9 

  CC 

 

 1.05 0.53 -  23.4 36.1 

   1.05 0.53 500 (RONOZYME® P)  24.1 42.1 

 15   CC 

DCP 

 1.17 0.78 -  30.9 29.8 
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Table 2.7. (Cont.)         

    CC  1.05 0.53 -  26.2 34.0 

     1.05 0.53 500 (RONOZYME® P)  28.6 46.0 

1Ref. list = 1. Kemme et al. (1997a); 2. Kemme et al. (1997b); 3. Baidoo et al. (2003); 4. Jongbloed et al. (2004); 5. Männer 

and Simon (2006); 6. Nyachoti et al. (2006); 7. Grela et al. (2011); 8. Jongbloed et al. (2013); 9. Jang et al. (2014); 10. Liu et al. 

(2014); 11. Nasir et al. (2014). 

2CC = Ca carbonate; DCP = dicalcium phosphate; MCP = monocalcium phosphate.



38 

 

Table 2.8. Concentrations (%) of Ca, P, and phytate-bound P and percentage of phytate-bound P 

relative to total P in plant feed ingredients 

Ingredient1 Ca P Phytate-bound P Phytate-bound P, % of total P 

Corn 0.02 0.26 0.21 81 

Soybean meal 0.33 0.71 0.38 54 

Barley 0.06 0.35 0.22 63 

Canola meal 0.69 1.08 0.65 60 

DDGS2, corn 0.12 0.73 0.26 36 

Rice bran, full fat3 0.11 2.58 2.38 92 

Rice bran, defatted 0.22 2.16 7.74 81 

Wheat 0.06 0.39 0.22 56 

 1Values from NRC (2012). 

 2DDGS = distiller’s dried grains with solubles. 

 3Values from Stein et al. (2016). 
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CHAPTER 3: STANDARDIZED TOTAL TRACT DIGESTIBILITY OF CALCIUM 

VARIES AMONG SOURCES OF CALCIUM CARBONATE, BUT NOT AMONG 

SOURCES OF DICALCIUM PHOSPHATE, BUT MICROBIAL PHYTASE INCREASES 

CALCIUM DIGESTIBILITY IN CALCIUM CARBONATE 

 

ABSTRACT 

Two experiments were conducted to test the hypothesis that standardized total tract digestibility 

(STTD) of Ca and the response to microbial phytase is constant among different sources of Ca 

carbonate and that the STTD of Ca is constant among different sources of dicalcium phosphate 

(DCP) when fed to growing pigs. In Exp. 1, 80 pigs (initial BW: 19.0 ± 1.9 kg) were randomly 

allotted to 10 diets and 2 blocks with 4 pigs per diet in each block. Four sources of Ca carbonate 

were used and each source was included in a diet without microbial phytase and a diet with 

microbial phytase (500 units/kg diet). Two Ca-free diets without or with microbial phytase were 

also formulated. Feed allowance was 2.7 times the maintenance energy requirement for ME and 

daily feed allotments were divided into 2 equal meals. The initial 4 d of each period were 

considered the adaptation period to the diets followed by 4 d of fecal collection using the marker 

to marker procedure. Pigs fed diets containing exogenous phytase had lower (P < 0.05) basal 

endogenous loss of Ca compared with pigs fed diets containing no phytase. There were no 

interactions between phytase and source of Ca carbonate. Values for STTD of Ca were greater (P 

< 0.05) for diets containing microbial phytase (77.3 to 85.4%) compared with diets without 

exogenous phytase (70.6 to 75.2%), and values for STTD of Ca differed (P < 0.05) among the 4 

sources of Ca carbonate. In Exp. 2, 40 pigs (initial BW: 14.9 ± 1.3 kg) were allotted to a 

completely randomized design with 5 diets and 8 replicate pigs per diet. A basal diet in which all 
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Ca was supplied by Ca carbonate was formulated. Three diets were formulated by adding 3 

sources of DCP to the basal diet and a Ca-free diet was also used. Feeding and collection 

methods were as described for Exp. 1. Results indicated that values for STTD of Ca and apparent 

total tract digestibility of P were not different among diets, indicating that under the conditions of 

this experiment, the digestibility of Ca and P in DCP appears to be constant regardless of origin 

of DCP. In conclusion, use of microbial phytase reduces the basal endogenous loss of Ca and 

increases Ca digestibility in Ca carbonate. The STTD of Ca varies among sources of Ca 

carbonate, regardless of phytase inclusion, but that appears not to be the case for the STTD of Ca 

in different sources of DCP. 

Key words: calcium, calcium carbonate, dicalcium phosphate, digestibility, phytase, pigs 

 

INTRODUCTION 

The concentration of Ca in most plant feed ingredients is low compared with the 

requirement for pigs, and Ca carbonate and dicalcium phosphate (DCP) are often used in diets 

for pigs to provide additional Ca. Although Ca is relatively inexpensive compared with other 

nutrients, excess dietary Ca may decrease P digestibility resulting in reduced feed intake and 

growth performance (Stein et al., 2011; González-Vega et al., 2016; Merriman et al., 2017; Blavi 

et al., 2018). Reduced digestibility of P may also result in increased excretion of P and possibly 

increase environmental pollution (Knowlton et al., 2004). Results of recent research indicate that 

provisions of P and Ca are most correctly assessed as a ratio between digestible Ca and digestible 

P (González-Vega et al., 2016; Merriman et al., 2017). However, whereas the digestibility of P in 

most feed ingredients has been reported (NRC, 2012), the number of experiments in which the 

digestibility by pigs of Ca in feed ingredients was determined is limited (Stein et al., 2016). 
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Therefore, determination of digestibility of Ca in dietary sources of Ca is needed. 

Absorption of Ca may be estimated by the total tract digestibility procedure (González-

Vega et al., 2014; Zhang et al., 2016), but Ca of endogenous origin is excreted in the feces along 

with undigested dietary Ca (González-Vega et al., 2013; 2014). Therefore, the concept of 

standardized total tract digestibility (STTD) of Ca that provides values for digestibility of Ca that 

are corrected for the basal endogenous loss of Ca has been introduced (Stein et al., 2016). 

Values for STTD of Ca in one source of Ca carbonate and in one source of DCP were 

reported by González-Vega et al. (2015a) and it was demonstrated that microbial phytase 

increased the STTD of Ca in Ca carbonate, but not in DCP. However, different suppliers of 

inorganic sources of Ca may use different raw materials and different production processes and 

the concentration of Ca in Ca-containing ingredients may vary among suppliers (Petersen and 

Stein, 2006). It is, however, not known if differences in raw materials and production procedures 

among suppliers of inorganic Ca influence the STTD of Ca or the response to microbial phytase. 

Therefore, the objective of this work was to test the hypotheses that STTD of Ca and the 

response to microbial phytase is constant among sources of Ca carbonate and that the STTD of 

Ca is constant among sources of DCP when fed to growing pigs. 

 

MATERIALS AND METHODS 

The Institutional Animal Care and Use Committee at the University of Illinois reviewed 

and approved the protocol for 2 experiments. Pigs used in both experiments were the offspring of 

Line 359 boars and Camborough females (Pig Improvement Company, Hendersonville, TN, 

USA). 
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Animals and Diets 

Exp. 1. Standardized Total Tract Digestibility of Ca in Ca Carbonate. Four sources of Ca 

carbonate (A = Calpro, ILC Resources, Alden, IA; B = Fre-Fro, ILC Resources, Alden, IA; C = 

GMC-Shelter Limestone, Selter Creek Quarry LLC, Maplehill, NC; D = Alix-US Lime, US 

Lime Co-St Clair, Marble City, OK) were procured from commercial companies in the United 

States (Table 3.1). Each source was included in 2 diets; i.e., one diet without microbial phytase 

and one diet with microbial phytase (500 phytase units/kg; Quantum Blue®, AB Vista, 

Marlborough, UK). Eighty growing pigs with an initial BW of 19.0 ± 1.9 kg were randomly 

allotted to 10 diets and 2 blocks with 4 pigs per diet in each block for a total of 8 replicate pigs 

per diet. All diets were based on corn and potato protein concentrate (Table 3.2). Two Ca-free 

diets without or with microbial phytase (500 phytase units/kg) were also formulated. All diets 

were based on corn and potato protein concentrate. Amino acids calculated as standardized ileal 

digestible amino acids, vitamins, and minerals other than Ca in the Ca-free diets were included in 

all diets to meet current nutrient requirement estimates (NRC, 2012). The vitamin and mineral 

premix that was used did not contain Ca. 

Exp. 2. Standardized Total Tract Digestibility of Ca in DCP. Forty growing pigs with an 

average initial body weight of 14.9 ± 1.3 kg were allotted to a randomized complete block design 

with a total of 8 replicate pigs per diet. Five diets were used and all diets were formulated 

without exogenous phytase (Table 3.2). A basal diet in which all Ca was supplied by Ca 

carbonate was formulated. Three sources of commercial DCP were procured from 3 commercial 

suppliers in the U.S. (A = PCS, PCS Sales USA, Northbrook, IL; B = Ultra-Phos, Kay Dee, 

LLC, Sioux City, IA; C = Simphos, J. R. Simplot Company, Boise, ID; Table 3.3) and 3 diets 

were formulated using each source of DCP. Calcium carbonate (same as the Ca carbonate source 
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A in Exp. 1) was also included in those diets to obtain a total Ca:STTD P ratio of 2.0:1.0, which 

is close to the requirement estimates for pigs (NRC, 2012). A Ca-free diet was used to determine 

the basal endogenous loss of Ca. Amino acids calculated as standardized ileal digestible amino 

acids, vitamins, and, with the exception of Ca in the Ca-free diet, minerals were included to meet 

current nutrient requirements (NRC, 2012).  

Housing, Feeding, and Sample Collection 

Pigs were housed individually in metabolism crates that were equipped with fully slatted 

floors, a feeder, and a cup waterer. A screen floor was installed below the slatted floor of the 

crates. Feed allowance was 2.7 times the maintenance energy requirement for ME for pigs (i.e., 

197 kcal ME/kg BW0.60). Water was available at all times. Daily feed allotments were divided 

into 2 equal meals that were provided at 0800 and 1600 h.  

The initial 4 d of each period were considered the adaptation period to the diets followed 

by 4 d of fecal collection using the marker to marker procedure (Adeola, 2001). Fecal collection 

was initiated when the first marker (i.e., indigo carmine) appeared in the feces and ceased when 

the second marker (i.e., ferric oxide) appeared (Adeola, 2001). Fecal samples were stored at ‒

20 °C as soon as collected. 

Chemical Analyses 

At the conclusion of the experiments, fecal samples were dried at 65 °C in a forced air 

oven in Exp. 1, but fecal samples were lyophilized in Exp. 2. The dried fecal samples then were 

finely ground through a 1-mm screen using a Wiley Mill (Model 4; Thomas Scientific, 

Swedesboro, NJ). Based on the methods described in AOAC Int. (2007), Ca and P in feed 

ingredients, 4 samples of each diet, and fecal samples were analyzed by inductively coupled 

plasma spectroscopy (Method 985.01 A, B, and C) after wet ash sample preparation [Method 
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975.03 B(b)]. Concentrations of Ca and P in all samples were analyzed at Missouri Analytical 

Laboratories (St. Louis, MO, USA) in duplicate. Diets were analyzed for phytase activity (ESC, 

Ystrad Mynach, UK) by the ELISA method using Quantiplate Kits for Quantum Blue® and feed 

ingredients were also analyzed for phytate-P (Megazyme method; ESC, Ystrad Mynach, UK). 

Feed ingredient, diet, and fecal samples were analyzed for dry matter (DM; AOAC Int., 2007; 

method 930.15). Feed ingredient and diet samples were also analyzed for ash (AOAC Int., 2007; 

method 942.05). Particle size of Ca carbonate and DCP was measured (ASABE, 2008), and the 

in vitro solubility of the 4 sources of Ca carbonate was determined using the procedure described 

by Zhang and Coon (1997b). 

Calculations 

 The ATTD of Ca and P in experimental diets was calculated using Eq. [3.1] (Almeida 

and Stein, 2010): 

intake - output
ATTD =   100

intake
 ,      [3.1] 

where ATTD is in % and intake and output in feces are expressed as gram per day. Because all 

Ca in the Ca carbonate-containing diets was from Ca carbonate in Exp. 1, the ATTD of Ca in the 

Ca carbonate-containing diets was considered the ATTD of Ca in Ca carbonate. 

The basal endogenous loss of Ca that was estimated as the total tract flow of Ca from 

pigs fed the Ca-free diets was expressed as mg/kg of DM intake (DMI) and was calculated using 

DMI in kilogram per day and Ca output in feces that was expressed as gram per day. The daily 

basal endogenous loss of Ca was calculated by multiplying the basal endogenous loss by the 

DMI of each pig. 

Values for STTD of Ca (%) were calculated using Eq. [3.2] (Almeida and Stein, 2010): 
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intake - (output - daily basal endogenous loss)
STTD =   100

intake
 ,   [3.2] 

where intake, output, and daily basal endogenous loss are in gram per day. 

To calculate the ATTD and STTD of Ca in 3 sources of DCP used in Exp. 2, the 

contributions of Ca from Ca carbonate to the DCP-containing diets was calculated and the ATTD 

and STTD of Ca in each source of DCP were calculated using the difference procedure (Adeola, 

2001). 

Statistical Analysis 

Normality of data was verified using the UNIVARIATE procedure (SAS Inst. Inc., Cary, 

NC) and outliers were identified as values that deviated from the 1st or 3rd quartiles by more than 

3 times the interquartile range (Tukey, 1977). An outlier was found for each experiment and the 

outliers were excluded for further statistical analysis. The pig was the experimental unit for all 

analyses. Data were analyzed using the PROC MIXED of SAS (SAS Institute Inc., Cary, NC). In 

Exp. 1, the statistical model included Ca source, phytase, and the Ca-source × phytase interaction 

as fixed effects and block and replicate within block as random effects. Mean separation was 

conducted by the PDIFF option with the Tukey’s adjustment if an interaction was significant. In 

Exp. 2, the statistical model included diet or source of DCP as fixed effects and replicate as 

random effect. Mean separation was conducted by the PDIFF option with the Tukey’s 

adjustment. Statistical significance and tendency were considered at P < 0.05 and 0.05 ≤ P < 

0.10, respectively. 

 

RESULTS 

Pigs remained healthy during both experiments and very little feed refusals were 

observed. Analyzed Ca and P in some diets in Exp. 1 varied slightly from calculated values, but 
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analyzed Ca and P in the DCP-containing diets used in Exp. 2 were close to calculated values 

(Tables 3.4 and 3.5). To avoid confounding effects due to analytical discrepancies, calculated 

values for all diets were used for calculations of Ca and P digestibility values. 

Exp. 1. Standardized Total Tract Digestibility of Ca in Ca carbonate 

Values for ATTD of DM did not differ between pigs fed Ca-free diets without or with 

microbial phytase (Table 3.6). However, fecal Ca excretion from pigs fed the Ca-free diet with 

microbial phytase was less (P < 0.05) than from pigs fed the Ca-free diet without phytase, which 

resulted in lower (P < 0.05) basal endogenous loss of Ca from pigs fed the diet containing 

phytase. The ATTD of P tended (P = 0.061) to be greater in the Ca-free diet with phytase than in 

the Ca-free diet without phytase. 

There were no interactions between phytase and source of Ca carbonate (Table 3.7). Feed 

intake and Ca and P intakes were not affected by use of microbial phytase or by the source of Ca 

carbonate included in the diet. However, fecal Ca excretion, daily basal endogenous Ca loss, and 

fecal P excretion were less (P < 0.001) from pigs fed diets containing Ca carbonate with 

microbial phytase compared with pigs fed the diets without microbial phytase. Therefore, 

absorbed Ca, ATTD of Ca, STTD of Ca, absorbed P, and ATTD of P increased (P < 0.01) if 

microbial phytase was included in the diets compared with diets without microbial phytase, 

regardless of the source of Ca carbonate. Fecal Ca excretion from pigs fed diet containing Ca 

carbonate source D was less (P < 0.05; data not shown) compared with Ca carbonate sources A, 

B, and C. Values for ATTD and STTD of Ca in Ca carbonate source A was greater (P < 0.05) 

than in Ca carbonate source D, but there was no difference between Ca carbonate source A and 

Ca carbonate sources B and C or between the sources B and C and source D (data not shown). 

The ATTD and STTD of Ca did no differ among Ca carbonate sources B, C, and D (data not 
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shown). The ATTD of P was not influenced by the source of Ca carbonate in the diet. 

Exp. 2. Standardized Total Tract Digestibility of Ca in DCP 

Feed intake, basal endogenous Ca loss, and P intake tended to be less (P < 0.10) for pigs 

fed the basal diet compared with pigs fed the DCP-containing diets (Table 3.8). Fecal excretion 

from pigs fed the diet containing DCP source B was greater (P < 0.05) than from pigs fed the 

basal diet. Values for the ATTD of Ca and STTD of Ca did not differ among the 3 sources of 

DCP (Table 3.9). Apparent total tract digestible Ca and standardized total tract digestible Ca 

were also not affected by source of DCP.  

 

DISCUSSION 

Based on the total molecular mass, analytical grade Ca carbonate (CaCO3) contains 

40.0% Ca. The average concentration of Ca in the 4 commercial sources of Ca carbonate used in 

Exp. 1 was 39.7%, which indicates very little impurity in the Ca carbonate sources used. For 

DCP (CaHPO4), based on the total molecular mass, the expected Ca concentration is 29.5%, and 

the expected P concentration is 22.8%. However, the 3 sources of DCP used in Exp. 2 had an 

average concentration of 19.1% P, and the average concentration of Ca was 19.5%, which 

indicates some impurity in these sources of DCP. The P concentration in a commercial DCP is 

usually lower than 22.8% because all sources of feed grade DCP in reality are mixtures of DCP, 

monocalcium phosphate, and unreacted Ca carbonate (Baker, 1989; Petersen and Stein, 2006). In 

addition, Ca fluoride, silica, Mg oxide, Mg phosphate, and Fe phosphate are often present in 

commercial sources of feed grade DCP (Baker, 1989), which is the reason feed grade DCP does 

not contain 22.8% P and 29.5% Ca. 

 The calculated concentration of Ca in the 8 Ca carbonate-containing diets used in Exp. 1 
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was between 0.67 to 0.69%, depending on the source of Ca carbonate used. Six of the 8 diets 

with Ca carbonate were within 0.03 percentage units of this value, but 2 diets analyzed only 0.62 

and 0.56% Ca. Those values were the average of 4 separate diet samples that were analyzed for 

Ca. It has been demonstrated that analyzed dietary Ca values often vary greatly (Wu et al., 2018), 

but because calculated Ca values were used in all calculations, these analytical discrepancies did 

not impact digestibility data that were calculated for Exp. 1. In contrary, only one fecal sample 

was used for the Ca analysis because the fecal samples that have been dried and ground 

thoroughly were considered relatively homogenous compared with diet samples that have more 

possibility to have segregations of ingredients, resulting in variations in the analysis. 

Values for the ATTD of P in the Ca-free diets that were formulated based on corn and 

monosodium phosphate without and with phytase were in agreement with expected values 

(NRC, 2012; González-Vega et al., 2015a; Blavi et al., 2017). However, the ATTD of P in the 

Ca carbonate-containing diets was less than the ATTD of P in the Ca-free diets. This indicates 

binding of Ca and P in the intestinal tract of pigs if both minerals are included in the diet, which 

has also been reported in the past (Stein et al., 2011). However, the observation that the ATTD of 

P in the Ca-free diet is greater than in a diet adequate in Ca indicates that the digestibility of P in 

growing pigs is not downregulated by the lack of Ca in the diet although the lack of Ca likely 

prevented the use of absorbed P for bone tissue synthesis. This observation is in agreement with 

recent data from gestating sows that also indicated that the ATTD of P is greater in a Ca-free diet 

than in a diet containing Ca carbonate (Lee et al., 2019).  

The basal endogenous loss of Ca that was determined in the 2 experiments was within the 

range of reported values (González-Vega et al., 2015b; Merriman, 2016; Merriman and Stein, 

2016; Blavi et al., 2017). The observation that use of microbial phytase decreased the basal 
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endogenous loss of Ca is different from data for total endogenous loss of Ca determined in pigs 

fed diets based on canola meal (González-Vega et al., 2013). However, if phytase was added to a 

Ca-free corn-based diet fed to gestating sows, there was also a decrease in the basal endogenous 

loss of Ca (Lee et al., 2019). This indicates that a Ca-phytate complex is formed in the intestinal 

tract between phytate in corn and endogenous Ca and that phytase addition to the diet results in 

release of this endogenous Ca from the complex, which in turn decreases the excretion of 

endogenous Ca in feces. Likewise, the negatively charged phytate may chelate Ca ions from feed 

ingredients in the intestine of pigs, resulting in formation of non-digestible Ca-phytate 

complexes (Nelson and Kirby, 1987; Selle and Ravindran, 2008). As a consequence, if phytase is 

used in diets, both Ca and P are released from the complex and the digestibility of Ca and P will 

increase (Almeida et al., 2013; Rodríguez et al., 2013; González-Vega et al., 2015a). The 

observation that the ATTD and STTD of Ca and the ATTD of P in the corn-Ca carbonate diets 

increased if phytase was added to the diets concur with previous data (González-Vega et al., 

2015a). These observations support the hypothesis that the Ca from Ca carbonate may bind to 

phytate in corn and that phytase reduces chelation, resulting in an increase in the digestibility of 

Ca and P.  

 Values for ATTD and STTD of Ca in Ca carbonate were in line with previous data 

(González-Vega et al., 2015a; Merriman and Stein, 2016; Blavi et al., 2017; Kwon and Kim, 

2017). The small, but significant, difference in the digestibility of Ca among the 4 sources of Ca 

carbonate demonstrates that differences among commercial sources of Ca carbonate exist. In this 

experiment, Ca carbonate source D had a lower digestibility than Ca carbonate source A 

although the particle size was greater in source A. Differences in the digestibility of Ca are not 

likely a result of differences in particle size because there appears to be no influence of particle 



68 

 

size on digestibility of Ca in Ca carbonate (Merriman and Stein, 2016) or on bioavailability of 

Ca in Ca carbonate (Ross et al., 1984). Solubility of Ca carbonate is likely to affect Ca utilization 

in poultry (Zhang and Coon, 1997a; Kim et al., 2018), but both ATTD and STTD of Ca in 4 

sources of Ca carbonate used in this experiment were not correlated (P > 0.10; data not shown) 

with solubility. 

 Values for the ATTD and STTD of Ca in the 3 sources of DCP that were used in this 

experiment are in agreement with previous data (González-Vega et al., 2015a; Zhang and 

Adeola, 2017). The observation that there was no difference in the digestibility of Ca and P 

among the 3 sources indicates that production processes and origins of the 3 sources of DCP 

used in this experiment did not influence the digestibility of Ca and P. 

 Values for the STTD of Ca in DCP were greater than the STTD of Ca in Ca carbonate. 

This may seem surprising because Ca in DCP originates from Ca carbonate (Baker, 1989), but 

previous data also demonstrated a greater digestibility of Ca in DCP compared with Ca from Ca 

carbonate (González-Vega et al., 2015a; Zhang and Adeola, 2017). The reason for this 

observation may be that some of the Ca from dietary Ca carbonate binds to the phytate that is 

supplied by corn in the diet when the 2 ingredients reach the aqueous environment in the 

stomach of pigs, which reduces the digestibility of Ca from Ca carbonate. In contrast, it appears 

that Ca in DCP, which is bound to P in the phosphoric acid, is less likely to solubilize in the 

stomach and becomes less available for chelation with phytate (Walk, 2016). These possible 

effects explain why phytase, as demonstrated in Exp. 1 and in previous experiments (González-

Vega et al., 2015a; Blavi et al., 2017), results in increased digestibility of Ca from Ca carbonate 

because phytase may release the Ca that was bound to phytate. In contrast, there is no effect of 

phytase on the digestibility of Ca in DCP (González-Vega et al., 2015a), which is consistent with 

the hypothesis that Ca from DCP is not chelated by phytate. 
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CONCLUSION 

Use of microbial phytase reduces the basal endogenous loss of Ca and increases Ca 

digestibility in Ca carbonate. The STTD of Ca varies among sources of Ca carbonate, but that 

appears not to be the case for the STTD of Ca in different sources of DCP. The STTD of Ca in 

DCP is greater than the STTD of Ca in Ca carbonate. 
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TABLES 

Table 3.1. Nutrient composition (as-fed basis) of feed ingredients, and particle size and in vitro 

solubility of Ca in Ca carbonate, Exp. 1 

Item, % 

Corn 
Potato protein 

concentrate 

 
Ca carbonate source 

  
A B C D 

 
Mean SD 

Nutrient composition1           

Dry matter 86.4 91.3 
 

99.8 99.9 99.8 99.9 
 

99.8 0.1 

Ash, % 1.1 0.5 
 

94.8 94.5 98.9 97.0 
 

97.2 3.0 

Ca, % < 0.01 0.02 
 

38.9 40.3 40.0 39.7 
 

39.7 0.6 

Total P, % 0.22 0.12 
 

< 0.01 < 0.01 < 0.01 < 0.01 
 

- - 

Phytate2, % 0.69 0.32 
 

- - - - 
 

- - 

Phytate-P, % 0.20 0.09 
 

- - - - 
 

- - 

Non-phytate P3, % 0.02 0.03 
 

- - - - 
 

- - 

Particle size, μm - -  435 469 407 97  352 172 

Solubility, % - -  40.0 45.1 43.8 42.0  42.7 2.2 

1All samples were analyzed in duplicate. 

2Phytate was calculated by dividing the analyzed phytate-P by 0.282 (Tran and Sauvant, 

2004). 

3Non-phytate P was calculated as the difference between total P and phytate-P.  
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Table 3.2. Ingredient composition of experimental diets (as-is basis), Exp. 1 and 2 

Ingredient, % Exp. 1  Exp. 2 

 Ca carbonate1 Ca-free1  Basal DCP2 Ca-free 

Corn 80.19 82.39  80.15 80.45 81.85 

Potato protein concentrate 15.00 15.00  15.00 15.00 15.00 

Ca carbonate 1.70 -  1.70 0.70 - 

Dicalcium phosphate - -  - 1.80 - 

Soybean oil 1.00 0.50  1.00 1.00 1.00 

L-Lys·HCl 0.35 0.35  0.35 0.35 0.35 

DL-Met 0.05 0.05  0.10 0.10 0.10 

L-Trp 0.05 0.05  0.05 0.05 0.05 

Monosodium phosphate 1.10 1.10  1.10 - 1.10 

Salt 0.40 0.40  0.40 0.40 0.40 

Vitamin-mineral premix3 0.15 0.15  0.15 0.15 0.15 

Phytase premix4 0.01 0.01  - - - 

1Four sources of commercial Ca carbonate were each included in one diet without 

microbial phytase and in one diet with microbial phytase (500 phytase units/kg; Quantum Blue®, 

AB Vista, Marlborough, UK); the Ca-free diet was formulated without or with microbial phytase 

(500 phytase units/kg; Quantum Blue®, AB Vista, Marlborough, UK). 

2DCP = dicalcium phosphate. Three sources of commercial DCP were used and each 

source was included in one diet. 

3The vitamin-mineral premix provided the following quantities of vitamins and micro 

minerals per kg of complete diet: vitamin A as retinyl acetate, 11,150 IU; vitamin D3 as  
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Table 3.2. (Cont.) 

cholecalciferol, 2,210 IU; vitamin E as selenium yeast, 66 IU; vitamin K as menadione 

nicotinamide bisulfate, 1.42 mg; thiamin as thiamine mononitrate, 1.10 mg; riboflavin, 6.59 mg; 

pyridoxine as pyridoxine hydrochloride, 1.00 mg; vitamin B12, 0.03 mg; D-pantothenic acid as D-

calcium pantothenate, 23.6 mg; niacin, 44.1 mg; folic acid, 1.59 mg; biotin, 0.44 mg; Cu, 20 mg 

as copper chloride; Fe, 125 mg as iron sulfate; I, 1.26mg as ethylenediamine dihydriodide; Mn, 

60.2 mg as manganese hydroxychloride; Se, 0.30mg as sodium selenite and selenium yeast; and 

Zn, 125.1mg as zinc hydroxychloride. 

4The phytase premix (Quantum Blue®, AB Vista, Marlborough, UK) contained 5,000 

units of phytase per g; corn starch was used at the expense of the phytase premix in diets without 

microbial phytase.  
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Table 3.3. Nutrient composition of ingredients and particle size of dicalcium phosphate (as-is 

basis), Exp. 2 

Item, % 

Corn 

Potato 

protein 

concentrate 

Ca 

carbonate 

 Dicalcium phosphate source 

 
 A B C 

 
Mean SD 

Nutrient composition1          

Dry matter 86.6 91.0 100.0  94.9 94.0 95.1 
 

94.7 0.6 

Ash 1.2 0.4 94.2  84.1 81.5 83.3 
 

83.0 1.3 

Ca < 0.01 0.02 39.7  20.5 18.9 18.9 
 

19.5 1.7 

Total P 0.23 0.13 0.13  18.5 19.8 19.1 
 

19.1 0.7 

Phytate2 0.64 0.28 -  - - - 
 

- - 

Phytate-P 0.18 0.08 -  - - - 
 

- - 

Non-phytate P3 0.05 0.05 0.13  - - - 
 

- - 

Particle size, μm - - -  508 1,079 465  684 343 

1All samples were analyzed in duplicate. 

2Phytate was calculated by dividing the analyzed phytate-P by 0.282 (Tran and Sauvant, 

2004). 

3Non-phytate P was calculated as the difference between total P and phytate-P.  
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Table 3.4. Analyzed composition of experimental diets (as-fed basis), Exp. 1 

Item1, % 0 phytase units/kg 
 

500 phytase units/kg 

Ca carbonate source: A B C D   Ca-free   A B C D   Ca-free 

Dry matter 88.1 87.9 88.3 88.3 

 

86.8 

 

87.5 87.4 87.4 87.3 

 

87.3 

Ash 3.65 4.11 3.74 4.21  2.44  4.18 3.84 4.55 3.87  2.74 

Ca 0.68 0.69 0.62 0.69  0.02  0.68 0.67 0.56 0.64  0.01 

Total P 0.49 0.51 0.51 0.46  0.46  0.46 0.48 0.48 0.48  0.49 

Phytate2 0.60 0.60 0.60 0.60  0.61  0.60 0.60 0.60 0.60  0.61 

Phytate-P3 0.17 0.17 0.17 0.17  0.17  0.17 0.17 0.17 0.17  0.17 

Non-phytate P4 0.32 0.34 0.34 0.29  0.29  0.29 0.31 0.31 0.31  0.32 

Phytase activity5 < 50 < 50 < 50 < 50   < 50   572 644 601 546   744 

1All samples were analyzed in duplicate and there were 4 diet samples to be analyzed. 

2Phytate was calculated by dividing the analyzed phytate-P by 0.282 (Tran and Sauvant, 2004). 

3Phytate-P values were calculated from analyzed phytate-P in the ingredients. 

4Non-phytate P was calculated as the difference between total P and phytate-P.  

5Phytase activity = phytase units/kg of diet.  
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Table 3.5. Analyzed composition of experimental diets (as-fed basis), Exp. 2 

Item1, % 

Basal 

 
Dicalcium phosphate source 

 

Ca-free 
   A B C   

Dry matter 88.3  87.7 87.5 87.3  87.6 

Ash 4.53  4.06 3.56 3.49  3.42 

Ca 0.68  0.69 0.62 0.61  0.03 

Total P 0.58  0.58 0.58 0.57  0.61 

Phytate2 0.55  0.55 0.55 0.55  0.56 

Phytate-P3 0.16  0.16 0.16 0.16  0.16 

Non-phytate P4 0.42  0.42 0.42 0.41  0.45 

Phytase activity, unit/kg < 50  < 50 < 50 < 50  < 50 

1All samples were analyzed in duplicate and there were 4 diet samples to be analyzed. 

2Phytate was calculated by dividing the analyzed phytate-P by 0.282 (Tran and Sauvant, 2004). 

3Phytate-P values were calculated from analyzed phytate-P in the ingredients. 

4Non-phytate P was calculated as the difference between total P and phytate-P. 
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Table 3.6. Basal endogenous loss (BEL) of Ca and apparent total tract digestibility (ATTD) of 

dry matter and P in Ca-free diets without or with microbial phytase fed to growing pigs1, Exp. 1 

Item  Phytase, unit/kg         

 0 500   SEM   P-value 

Feed intake, g/d 688 645 
 

44  0.506 

Fecal excretion, g/d 60 66 
 

6  0.539 

ATTD of dry matter, % 90.5 88.8  0.7  0.103 

Fecal Ca excretion, mg/d 273 165 
 

42  0.013 

BEL of Ca, mg/kg dry matter intake 463 304 
 

64  0.037 

P intake, g/d 3.2 3.0 
 

0.2  0.521 

Fecal P excretion, g/d 1.0 0.8 
 

0.1  0.021 

Absorbed P, g/d 2.2 2.2 
 

0.2  0.890 

ATTD of P, % 68.4 73.4   2.5   0.061 

1Each least squares mean represents 8 observations. 
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Table 3.7. Apparent total tract digestibility (ATTD) and standardized total tract digestibility (STTD) of Ca and ATTD of dry matter 

and P in experimental diets containing 4 sources of Ca carbonate fed to growing pigs1, Exp. 1 

 Item, % 0 phytase units/kg 
 

500 phytase units/kg 
   

P-value 

Ca carbonate source: A B C D 
 

A B C D 
 

SEM 
 

Phytase Source Interaction 

Feed intake, g/d 835 778 824 850 
 

840 756 810 898 
 

43 
 

0.886 0.090 0.846 

Fecal excretion, g/d 83 76 85 85 
 

83 76 87 90 
 

6 
 

0.665 0.128 0.972 

ATTD of dry matter, % 89.5 89.5 89.1 89.4 
 

89.1 89.0 88.4 89.1 
 

0.5 
 

0.206 0.698 0.973 

Calcium                

Ca intake, g/d 5.6 5.4 5.7 5.8 
 

5.6 5.2 5.6 6.1 
 

0.3 
 

0.909 0.154 0.853 

Fecal Ca excretion, g/d 1.8 1.7 1.9 2.1 
 

1.0 1.3 1.4 1.6 
 

0.1 
 

< 0.001 0.001 0.422 

Absorbed Ca, g/d 3.8 3.7 3.7 3.7 
 

4.6 3.9 4.2 4.5 
 

0.3 
 

0.003 0.441 0.663 

ATTD of Ca, % 68.7 69.4 66.1 64.6 
 

81.4 74.9 75.0 73.4 
 

1.8 
 

< 0.001 0.007 0.227 

Basal endogenous Ca loss2, mg/d 340 316 336 347 
 

223 200 215 238 
 

15 
 

< 0.001 0.120 0.984 

STTD of Ca3, % 74.8 75.2 72.0 70.6 
 

85.4 78.7 78.8 77.3 
 

1.8 
 

< 0.001 0.006 0.235 

Phosphorus                

P intake, g/d 3.8 3.6 3.8 3.9 
 

3.9 3.5 3.7 4.1 
 

0.2 
 

0.908 0.081 0.852 



78 

 

Table 3.7. (Cont.)                

Fecal P excretion, g/d 1.9 1.7 2.0 1.9  1.2 1.3 1.4 1.5  0.1  < 0.001 0.064 0.351 

Absorbed P, g/d 1.9 1.9 1.8 2.0 
 

2.6 2.2 2.3 2.6 
 

0.2 
 

< 0.001 0.127 0.618 

ATTD of P, % 49.5 51.9 47.0 51.6 
 

67.8 62.9 62.1 64.0 
 

2.3 
 

< 0.001 0.230 0.295 

 1Each least squares mean for experimental diets from growing pigs represents 8 observations, respectively, with the exception 

for the diet containing source C with 500 phytase units/kg diet (n = 7); the outlier deviated from 1st- and 3rd-quartile by 3.5 times the 

interquartile range within the treatment. 

2The daily basal endogenous Ca loss (mg/d) was calculated by multiplying the basal endogenous Ca loss (mg/kg dry matter 

intake) by the daily dry matter feed intake (kg/d) of each diet. 

3The STTD of Ca in diets was calculated by correcting the ATTD of Ca for basal endogenous Ca loss that was obtained from 

pigs fed the Ca-free diets; basal endogenous Ca loss from pigs fed the Ca-free diet without microbial phytase = 463 mg/kg dry matter 

intake; basal endogenous Ca loss from pigs fed the Ca-free diet with microbial phytase = 304 mg/kg dry matter intake.
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Table 3.8. Apparent total tract digestibility (ATTD) and standardized total tract digestibility 

(STTD) of Ca and ATTD of dry matter and P in experimental diets fed to growing pigs1, Exp. 2 

 Item 

Basal 

  DCP source2   

SEM 

 

P-value 
   A B C     

Feed intake, g/d 565  625 739 660  43  0.063 

Fecal excretion, g/d 60b  74ab 89a 80ab  7  0.037 

ATTD of dry matter, % 88.8  86.8 87.1 87.0  1.0  0.448 

Ca intake, g/d 3.8  4.0 4.6 4.1  0.3  0.318 

Fecal Ca excretion, g/d 1.1  1.3 1.3 1.1  0.1  0.395 

Absorbed Ca, g/d 2.7  2.8 3.3 3.0  0.2  0.398 

ATTD of Ca, % 71.5  68.4 71.2 72.9  2.2  0.551 

Basal endogenous Ca loss3, mg/d 389  428 506 451  30  0.070 

STTD of Ca4, % 81.7  79.0 82.3 83.9  2.2  0.473 

P intake, g/d 3.3  3.6 4.3 3.7  0.2  0.079 

Fecal P excretion, g/d 1.5  1.7 1.9 1.7  0.1  0.194 

Absorbed P, g/d 1.8  2.0 2.4 2.1  0.2  0.215 

ATTD of P, % 55.7   53.1 56.1 55.1   3.0   0.893 

 1Each least squares mean for experimental diets from growing pigs represents 8 

observations, respectively, with the exception for the diet containing DCP source B diet (n = 7); 

the outlier deviated from 1st- and 3rd-quartile by 3.2 times the interquartile range within the 

treatment. 

2DCP = dicalcium phosphate. 

3The daily basal endogenous Ca loss (mg/d) was calculated by multiplying the basal  
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Table 3.8. (Cont.) 

endogenous Ca loss (mg/kg dry matter intake) by the daily dry matter feed intake (kg/d) of each 

diet. 

4The STTD of Ca in diets was calculated by correcting the ATTD of Ca for basal 

endogenous Ca loss that was obtained from pigs fed the Ca-free diet (basal endogenous loss Ca 

loss = 782 mg/kg dry matter intake).  



81 

 

Table 3.9. Apparent (ATTD) and standardized total tract digestibility (STTD) of Ca in 3 

different sources of dicalcium phosphate (DCP) fed to growing pigs1, Exp. 2 

Item DCP source  

SEM 

  

P-value 
 A B C 

  

ATTD        

Digestibility, % 66.1 71.0 74.0  4.1  0.393 

Digestible Ca, % 14.5 14.1 13.7  0.8  0.811 

STTD        

Digestibility, % 77.0 82.8 85.8  4.1  0.314 

Digestible Ca, % 16.9 16.4 15.9  0.8  0.716 

 1Each least squares mean for experimental diets from growing pigs represents 8 

observations, respectively, with the exception that the diet containing DCP source B only had 7 

observations. 
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CHAPTER 4: THE ASH IN METACARPALS, METATARSALS, AND TIBIA IS 

BETTER CORRELATED WITH TOTAL BODY BONE ASH THAN THE ASH IN 

OTHER BONES OF GROWING PIGS 

 

ABSTRACT 

The objective of this experiment was to determine correlations between individual bones in the 

body and total bone ash to identify the bone or bones that is or are most representative of total 

body bone ash in growing pigs. Twenty growing pigs (initial body weight: 40.78 ± 3.47 kg) were 

allotted to 2 diets using a randomized complete block design with sex and body weight as blocks 

and thus there were ten replicate pigs (5 gilts and 5 barrows) per diet. The 2 experimental diets 

were formulated to contain 60% or 100% of the requirement for standardized total tract 

digestible (STTD) P. Calcium was included in both diets to maintain a STTD Ca to STTD P 

ratio of 1.90:1, which is believed to maximize bone ash. Pigs were allowed ad libitum access to 

feed and water was available at all times. Body weight of pigs and the amount of feed consumed 

by pigs were recorded on d 14 and d 28. On the last day, pigs were slaughtered and carcass 

characteristics were determined. Metacarpals, metatarsals, femur, tibia, fibula, ribs, and all other 

bones from the left half of the carcass were collected separately. Each of the bone samples were 

defatted and ashed. Overall, pigs fed the diet containing 100% of the requirement for Ca and P 

had greater (P < 0.05) average daily gain and gain to feed ratio compared with pigs fed the diet 

containing 60% of the requirement for Ca and P, but there was no difference in average daily 

feed intake between pigs fed the 2 diets. There was no effect of dietary Ca and P on carcass 

weights of pigs. Weights of bone ash were greater (P < 0.05) for pigs fed the diet containing 

100% of the requirement for Ca and P compared with pigs fed the diet containing 60% of the 
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requirement. Concentration of ash in total and all individual bones except femur and fibula were 

greater (P < 0.05) in pigs fed the diet containing 100% of the requirement for Ca and P compared 

with pigs fed the diet containing 60% of the requirement. There were positive correlations (P < 

0.05) in weights of bone ash and concentrations of ash between total bone and all individual 

bones. Correlation coefficients between the weight of ashed metacarpals, metatarsals, and tibia 

and the weight of total bone ash were greater than 0.950, which was greater than for femur, 

fibula, or ribs. Unlike bone ash weight, all correlation coefficients between individual bones and 

total bones for percentage ash were less than 0.750. In conclusion, metacarpals, metatarsals, and 

tibia were more representative of total body bone ash compared with femur, fibula, and ribs. 

Key words: bone ash, calcium, correlation, phosphorus, growing pigs 

 

INTRODUCTION 

The most abundant elements in the body are Ca and P and most Ca and P are deposited in 

bone tissue (Crenshaw, 2001; Létourneau-Montminy et al., 2015). Therefore, bone 

characteristics of pigs are affected by dietary Ca and P (Crenshaw et al., 1981; Lagos et al., 

2019a; Vier et al., 2019). Using X-ray absorptiometry, it was determined that femur ash was a 

better indicator of total body mineral content in 25 kg pigs compared with fibula ash (Crenshaw 

et al., 2009). As a consequence, in recent work to determine effects of dietary Ca and P on body 

bone ash in growing pigs, femur ash has been used as a representative bone (González-Vega et 

al., 2016; Merriman et al., 2017; Lagos et al., 2019b) although metacarpal ash has also 

sometimes been measured (González-Vega et al., 2016; She et al., 2017; Vier et al., 2019). 

However, to our knowledge, no data have demonstrated which bone best predicts total body bone 

ash when pigs are fed diets containing different levels of Ca and P. Therefore, the objective of 
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this experiment was to determine correlations between individual bones and total body bone ash 

to identify the bone that is most representative of total body bone ash in growing pigs. 

 

MATERIALS AND METHODS 

The Institutional Animal Care and Use Committee at the University of Illinois reviewed 

and approved the protocol for the experiment before the animal work was initiated. Pigs were the 

offspring of Line 359 boars and Camborough females (Pig Improvement Company, 

Hendersonville, TN, USA). 

Animals, Housing, Feeding, and Diets 

Twenty growing pigs [initial body weight (BW): 40.78 ± 3.47 kg] were allotted to 2 diets 

using a randomized complete block design with sex and BW as blocks and thus there were ten 

replicate pigs (5 gilts and 5 barrows) per diet. Pigs were housed individually in fully slatted pens 

(0.9 × 1.8 m). Room temperature was controlled and each pen had a feeder, a nipple drinker, and 

a fully slatted concrete floor. Pigs were allowed ad libitum access to feed and water was 

available at all times. Pigs were weighed on d 14 and at the conclusion of the experiment (d 28). 

The amount of feed offered was recorded daily and the amount of feed in the feeders was 

recorded on d 14 and 28.  

The 2 experimental diets (Table 4.1) were based on corn and soybean meal and 

formulated to contain 60 or 100% of the requirement for standardized total tract digestible 

(STTD) P (NRC, 2012). Calcium was included in both diets to maintain a STTD Ca to STTD P 

ratio of 1.90:1, which is believed to maximize bone ash (Lagos et al., 2019a; Lee et al., 2019a). 

All nutrients except Ca and P were included in both diets at the requirement for growing pigs 

(NRC, 2012). 
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Carcass Characteristics and Bone Measurements 

On the last day of the experiment, pigs were transported to the University of Illinois Meat 

Science Laboratory. Pigs were fasted for approximately 18 h and weighed again to determine 

ending live weight. Following exsanguination, blood was weighed. Pigs were scalded, dehaired, 

and singed to remove all hair from the carcass and toenails and tail were removed. The weight of 

the viscera (i.e., heart, kidneys, liver, gall bladder, spleen, lungs, trachea, reproductive tract, and 

emptied gastrointestinal tract) was recorded. Weights of bone with fat and muscle tissues on, 

feet, skin, and soft tissue from the left side of the carcass were recorded the day after pigs were 

killed. Heads were excluded in all analyses. 

Third and 4th metacarpals, 3rd and 4th metatarsals, femur, tibia, fibula, 3rd and 4th ribs, and 

10th and 11th ribs from the left half of the carcass were collected separately and stored at −20 °C. 

All remaining bones from the left half of the carcass were combined, the weight was recorded, 

and these bones were also stored at −20 °C. Each of the frozen bone samples was thawed and 

autoclaved at 125 °C for 55 min. Marrow and fat were removed and bones were soaked in 

petroleum ether under a chemical hood for 72 h. Defatted bone samples were dried for 2 h at 

135 °C and weighted and then ashed overnight at 600 °C. The weight of bone ash in each sample 

was recorded and concentration of ash was calculated as a percentage of bone dry weight. 

Weight of defatted total body bone ash was calculated by the sum of weight of individual bones 

and all remaining bones. Because the entire half of the body was used to measure body bone ash, 

weight of total and individual bone ash was calculated by multiplying the bone ash weight from 

the left half by 2. 

Chemical Analyses 

Diet samples were analyzed for dry matter (AOAC Int., 2007; method 930.15) and ash in 
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diet and bone samples was analyzed (AOAC Int., 2007; method 942.05). The gross energy in 

diet samples was measured using an isoperibol bomb calorimeter (Model 6400, Parr Instruments, 

Moline, IL). Crude protein in diet samples was calculated as N × 6.25 and N was measured by 

the combustion procedure (method 990.03; AOAC Int., 2007) using a LECO FP628 (LECO 

Corp., Saint Joseph, MI). Calcium and P in diet samples were analyzed by inductively coupled 

plasma spectroscopy (AOAC Int., 2007; method 985.01 A, B, and C) after wet ash sample 

preparation [AOAC Int., 2007; method 975.03 B(b)]. 

Statistical Analysis 

Normality of data was verified using the UNIVARIATE procedure (SAS Inst. Inc., Cary, 

NC) and homogeneity was also confirmed. Outliers were identified as values that deviated from 

1st- and 3rd-quartile by more than 3 times the interquartile range within treatment (Tukey, 1977). 

The pig was the experimental unit. Data were analyzed using MIXED procedures of SAS (SAS 

Institute Inc., Cary, NC). The statistical model included diet as fixed effect and sex and BW 

within sex as random effects. Correlation coefficients (r) between total bone and individual 

bones were determined using the CORR procedure of SAS. Statistical significance and tendency 

were considered at P < 0.05 and 0.05 ≤ P < 0.10, respectively. 

 

RESULTS 

All pigs remained healthy and had normal feed intake throughout the experiment.  

Growth Performance and Carcass Weights 

There was no effect of dietary Ca and P on BW at d 14, but pigs fed the diet containing 

100% of the requirement for Ca and P tended to have greater (P < 0.10) BW on d 28 (Table 4.2). 

From d 0 to 14, average daily gain (ADG) and average daily feed intake (ADFI) of pigs were not 
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affected by dietary Ca and P, but gain to feed ratio (G:F) of pigs fed the diet containing 100% of 

the requirement for Ca and P was greater (P < 0.01) compared with pigs fed the diet containing 

60% of the requirement for Ca and P. There was no effect of dietary Ca and P on ADG, ADFI, or 

G:F of pigs from d 14 to 28. Overall, pigs fed the diet containing 100% of the requirement for Ca 

and P had greater (P < 0.05) ADG and G:F compared with pigs fed the diet containing 60% of 

the requirement for Ca and P, but there was no difference in ADFI between the 2 diets.  

There was no effect of dietary Ca and P on carcass weights of pigs (Table 4.3). 

Bone Ash 

Weights of total and individual bone ashes were greater (P < 0.05) for pigs fed the diet 

containing 100% of the requirement for Ca and P compared with pigs fed the diet containing 

60% of the requirement (Table 4.4). The concentration of ash in total and all individual bones 

except femur and fibula was greater (P < 0.05) in pigs fed the diet containing 100% of the 

requirement for Ca and P compared with pigs fed the diet containing 60% of the requirement. 

Ash concentration in the fibula tended to be greater (P < 0.10) if pigs were fed Ca and P at the 

requirement compared with pigs fed Ca and P below the requirement. 

There were positive correlations (P < 0.05) in the weight of bone ash in individual bones 

and the weight of total body bone ash (Table 4.5). Correlation coefficients between the weight of 

ashed metacarpals, metatarsals, and tibia and the weight of total bone ash were greater than 

0.950, which was greater than for femur, fibula, or ribs. Unlike bone ash weight, all correlation 

coefficients between individual bones and total body bone ash for percentage ash were less than 

0.750. 
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DISCUSSION 

The analyzed Ca and P in both diets were in agreement with calculated values. Results 

from this experiment illustrated that growth performance and body bone ash of pigs were 

reduced if dietary Ca and P are below the requirement. However, this negative effect was greater 

for bone ash than for growth performance. This implies that compared with pigs fed 100% of the 

requirement for Ca and P, pigs that were fed the diet containing 60% of the requirement utilized 

a greater proportion of dietary Ca and P for growth of soft tissues and a lower proportion for 

bone tissue synthesis. Pigs fed the diet with only 60% of the requirement for Ca and P may also 

have been able to mobilize Ca and P from bones to compensate for dietary deficiencies of Ca and 

P. These data support the hypothesis that Ca and P requirements to maximize growth 

performance are less than requirements to maximize bone ash (NRC, 2012).  

The observation that bone ash was reduced by lowering Ca and P in diets was in 

agreement with previous data (Crenshaw et al., 1981; González-Vega et al., 2016; Lagos et al., 

2019a; Vier et al., 2019). Whereas differences in percentage of ash in defatted bones were 

relatively small between pigs fed the 2 diets, the weight of bone ash was dramatically affected by 

dietary Ca and P in this experiment. This was also observed in previous experiments (Crenshaw 

et al., 1981; González-Vega et al., 2016; Lagos et al., 2019a), and indicated that differences 

observed in bone ash weight were likely a result of differences in the size of bones rather than 

differences in the percentage of ash. This observation indicates that the composition of bone 

tissue does not change to a great extent, regardless of dietary provisions of Ca and P. However, 

the size of the bones are affected by diet Ca and P concentrations which is the reason the weight 

of bone ash changed without changes in bone ash percentage. This observation may also be the 

reason for the lower correlation coefficients for percentage ash between ash in individual bone 
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and total body bone ash. 

Most Ca and P in the body are present in skeletal tissue (Crenshaw, 2001). Therefore, 

analyzing bone ash has been a standard procedure for Ca and P-related experiments for many 

years and different bone parts, mostly from legs and feet, have been used to represent total body 

bone ash (Crenshaw et al., 1981; Crenshaw et al., 2009). The reason legs or feet are frequently 

used may be that it is relatively easier to collect these bones compared with bones in other parts 

of the body. The observation that correlation coefficients between bone ash weight of 

metacarpals, metatarsals, and tibia and total bone ash weight were greater than 0.950 whereas 

ribs had the least coefficients is in agreement with data indicating that physical characteristics of 

metacarpals and metatarsals from pigs at 3 to 5 months of age were more sensitive to different 

levels of dietary Ca and P than other individual bones (Crenshaw et al., 1981). However, femur 

was a better indicator of total mineral contents or physiological characteristics of bone in pigs at 

early age compared with other individual bones (Crenshaw et al., 1981; Crenshaw et al., 2009). It 

is possible that the most representative bone for total bone ash depends on the age of pigs, but 

more research is needed to test this hypothesis by analyzing total bone ash from pigs at different 

age groups. 

 

CONCLUSION 

Providing dietary Ca and P below the requirement negatively affected growth 

performance of pigs and reduced total body bone ash in growing pigs. As weight of total body 

bone ash increased, weight of all ashed individual bones also increased. Total ash weight of 

bones was better correlated with dietary Ca and P than was percentage ash in bones. 

Metacarpals, metatarsals, and tibia were more representative of total body bone ash in growing 

pigs compared with femur, fibula, and ribs.   
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TABLES 

Table 4.1. Ingredient and nutrient composition of diets fed to growing pigs (as-fed basis) 

 % of the requirement 

Item 60 100 

Ingredient, %   

Ground corn 77.91 76.85 

Soybean meal 19.00 19.00 

Choice white grease 1.00 1.00 

Calcium carbonate 0.81 1.11 

Dicalcium phosphate  0.26 1.02 

L-Lys∙HCl 0.33 0.33 

DL-Met 0.05 0.05 

L-Thr 0.09 0.09 

Sodium chloride 0.40  0.40  

Vitamin-mineral premix1 0.15  0.15  

Analyzed nutrient, %   

Dry matter 89.18 89.64 

Gross energy 3,906 3,878 

Crude protein 14.53 14.45 

Ash 3.54 4.24 

Calcium 0.49 0.74 

Phosphorus 0.39 0.50 

STTD Ca to STTD P ratio2,3 1.90 1.90 

1The vitamin-mineral premix provided the following quantities of vitamins and micro 

minerals per kg of complete diet: vitamin A as retinyl acetate, 11,150 IU; vitamin D3 as 

cholecalciferol, 2,210 IU; vitamin E as selenium yeast, 66 IU; vitamin K as menadione 

nicotinamide bisulfate, 1.42 mg; thiamin as thiamine mononitrate, 1.10 mg; riboflavin, 6.59 mg; 

pyridoxine as pyridoxine hydrochloride, 1.00 mg; vitamin B12, 0.03 mg; D-pantothenic acid as D- 
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Table 4.1. (Cont.) 

calcium pantothenate, 23.6 mg; niacin, 44.1 mg; folic acid, 1.59 mg; biotin, 0.44 mg; Cu, 20 mg 

as copper chloride; Fe, 125 mg as iron sulfate; I, 1.26mg as ethylenediamine dihydriodide; Mn, 

60.2 mg as manganese hydroxychloride; Se, 0.30mg as sodium selenite and selenium yeast; and 

Zn, 125.1mg as zinc hydroxychloride. 

2STTD = standardized total tract digestible. 

3Values for the STTD Ca and STTD P were calculated rather than analyzed (NRC, 2012; 

Lee et al., 2019b); the ratio between STTD Ca and STTD P was to maximize bone ash of 40 kg 

pigs (Lagos et al., 2019a; Lee et al., 2019a).  
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Table 4.2. Growth performance of pigs fed experimental diets (n = 10) 

 % of the requirement  

SEM 

 

P-value 
Item1 60 100   

BW, kg       

d 0 40.64 40.92  -  - 

d 14 52.22 54.14  2.29  0.116 

d 28 67.30 70.54  1.46  0.060 

d 0 to 14           

ADG, kg/d 0.83 0.94  0.06  0.102 

ADFI, kg/d 2.23 2.16  0.07  0.510 

G:F 0.37 0.44  0.03  0.001 

d 14 to 28           

ADG, kg/d 1.08 1.17  0.11  0.196 

ADFI, kg/d 2.54 2.51  0.17  0.881 

G:F 0.43 0.47  0.02  0.145 

Overall           

ADG, kg/d 0.95 1.06  0.04  0.037 

ADFI, kg/d 2.39 2.34  0.12  0.693 

G:F 0.40 0.45  0.01  < 0.001 

1BW = body weight; ADG = average daily gain; ADFI = average daily feed intake; G:F = 

gain to feed ratio.  
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Table 4.3. Carcass weights of pigs fed experimental diets (n = 10) 

 % of the requirement  

SEM 

 

P-value 
Item 60 100   

Ending live BW, kg 64.89 67.13  1.38  0.162 

Hot carcass weight, kg 47.92 49.62  1.11  0.239 

Left side          

Side weight, kg 23.43 24.18  0.56  0.235 

Bone1, kg 3.55 3.67  0.08  0.227 

Feet, kg 0.74 0.75  0.02  0.741 

Skin, kg 2.49 2.40  0.05  0.259 

Soft tissue, kg 16.58 17.33  0.46  0.225 

Blood, kg 2.86 2.96  0.14  0.570 

Viscera2, kg 6.99 7.09  0.18  0.483 

1Weights of bone were measured with tissues on and head, tail, and feet were not 

included. 

2Visceral weight excluded the weight of digesta in the gastrointestinal tract. 
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Table 4.4. Bone ash weight and concentration of ash in total bone, metacarpals, metatarsals, 

femur, tibia, fibula, and ribs from pigs fed experimental diets1 (n = 10) 

 % of the requirement  

SEM 

 

P-value 
Item  60 100   

Bone ash2, g             

Total 727.76 946.70   28.10   < 0.001 

Metacarpals 11.87 13.84   0.38   0.001 

Metatarsals 12.60 15.40   0.48   0.001 

Femur 73.66 88.88  4.16  0.025 

Tibia 36.91 46.29   1.51   0.001 

Fibula 5.51 6.60   0.20   0.001 

3rd and 4th ribs 8.87 12.09   0.75   0.001 

10th and 11th ribs 8.76 11.44   0.32   < 0.001 

Bone ash, % defatted and dried bones             

Total 54.61 57.17   0.39   < 0.001 

Metacarpals 59.23 61.53   0.36   < 0.001 

Metatarsals 59.24 61.32   0.37   < 0.001 

Femur 56.89 58.17  0.53  0.118 

Tibia 60.25 61.73   0.39   0.020 

Fibula 59.81 61.18   0.65   0.089 

3rd and 4th ribs 55.04 57.65   0.59   0.002 

10th and 11th ribs 55.60 58.10   0.51   0.003 

1All bones were collected from the left half of the carcass. Therefore, weight of bone ash 

was calculated by multiplying by 2. Total bones represent the sum of metacarpals, metatarsals, 

femur, tibia, fibula, ribs, and miscellaneous bones, but head, tail, and feet were not included. 
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Table 4.4. (Cont.) 

2Bone ash (g) was calculated by multiplying defatted and dried bone weight by 

percentage ash in the defatted and dried bone. 
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Table 4.5. Correlation coefficients (r) between total bone and individual bones1 (n = 20) 

 Total bone 

Item Bone ash2, g Bone ash, %  

Metacarpals 0.956*** 0.741*** 

Metatarsals 0.971*** 0.735*** 

Femur 0.846*** 0.722*** 

Tibia 0.957*** 0.644** 

Fibula 0.929*** 0.658** 

3rd and 4th ribs 0.817*** 0.704** 

10th and 11th ribs 0.876*** 0.539* 

 *P < 0.05; **P < 0.01; ***P < 0.001. 

1All bones were collected from the left half of the carcass. Therefore, weight of bone ash 

was calculated by multiplying by 2. Total bones represent the sum of metacarpals, metatarsals, 

femur, tibia, fibula, ribs, and miscellaneous bones, but head, tail, and feet were not included. 

2Bone ash (g) was calculated by multiplying defatted and dried bone weight by 

percentage ash in the defatted and dried bone. 
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CHAPTER 5: COMPARATIVE DIGESTIBILITY AND RETENTION OF CALCIUM 

AND PHOSPHORUS IN NORMAL- AND HIGH-PHYTATE DIETS BY GESTATING 

SOWS AND GROWING PIGS 

 

ABSTRACT 

The objective of this experiment was to test the hypothesis that standardized total tract 

digestibility (STTD) of Ca and P and retention of Ca and P are not affected by the physiological 

state of pigs. A total of 32 gestating sows (d of gestation = 40) and 32 barrows (body weight = 

19.8 kg) were placed in metabolism crates. Two diets were formulated to contain 9.8 or 29.4 

g/kg of phytate. Diets were formulated based on corn, soybean meal, Ca carbonate, and 

dicalcium phosphate and high-phytate diets also contained 400 g/kg full-fat rice bran. A Ca-free 

diet and a P-free diet were formulated to determine the basal endogenous losses of Ca and P, 

respectively. Feces and urine were collected for 4 d after 4 d of adaptation. The basal 

endogenous losses of Ca and P (g/kg DM intake) from gestating sows were greater (P < 0.05) 

than from growing pigs. The digestibility of DM was not affected by physiological state, but was 

greater (P < 0.001) in the normal-phytate diet than in the high-phytate diet. Phytate level did not 

affect the STTD of Ca or Ca retention by gestating sows, but the STTD of Ca and Ca retention 

were greater if growing pigs were fed the normal-phytate diet than if they were fed the high-

phytate diet (physiological state × phytate level interaction; P < 0.001). The STTD of P was 

greater for the normal-phytate diet than the high-phytate diet, but the difference was greater for 

growing pigs than for gestating sows (physiological state × phytate level interaction; P = 0.002). 

Phosphorus retention by growing pigs fed the normal-phytate diet was greater than if they were 

fed the high-phytate diet, but P retention by gestating sows was not affected by phytate level 
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(physiological state × phytate level interaction; P < 0.001). In conclusion, gestating sows have 

reduced digestibility and retention of Ca and P, but increased basal endogenous loss of Ca and P, 

compared with growing pigs. Response to dietary phytate is different for Ca and P balance 

between gestating sows and growing pigs. It may, therefore, not always be accurate to formulate 

diets for gestating sows using digestibility values for Ca and P that were obtained in growing 

pigs. 

Key words: calcium, digestibility, endogenous loss, phosphorus, retention, sow 

 

INTRODUCTION 

Digestibility of energy and some nutrients may be affected by age, weight, and 

physiological state of the animal and gestating sows usually have greater digestibility of energy 

than growing pigs (Le Goff and Noblet, 2001; Casas and Stein, 2017). Coefficients for 

digestibility of Ca and P are most correctly determined as standardized total tract digestibility 

(STTD; NRC, 2012; Stein et al., 2016). Data for the STTD of P in most feed ingredients have 

been published (NRC, 2012), and the digestibility of Ca has also been determined in many feed 

ingredients (Stein et al., 2016; Zhang et al., 2016). Most values for STTD of Ca and P in feed 

ingredients have been determined in growing pigs (González-Vega et al., 2015b; Zhang and 

Adeola, 2017; Lee et al., 2019b). It is, however, not known if the STTD of Ca and P is different 

between gestating sows and growing pigs, but in practical diet formulation, values for STTD of 

Ca and P obtained in growing pigs are also applied to sows. Therefore, the objective of this 

experiment was to test the hypothesis that standardized total tract digestibility (STTD) and 

retention of Ca and P are not affected by the physiological state of pigs. 
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MATERIALS AND METHODS 

The Institutional Animal Care and Use Committee at the University of Illinois reviewed 

and approved the protocol for this experiment. Camborough sows (PIC, Hendersonville, TN) 

were used and growing pigs were the offspring of Line 359 boars and Camborough females that 

were not used in the experiment (Pig Improvement Company, Hendersonville, TN, USA). 

Diets and Feeding 

The same batches of corn, soybean meal, rice bran, Ca carbonate, and dicalcium 

phosphate were used to prepare all diets (Table 5.1). Four diets were used in the experiment 

(Table 5.2). Two diets were formulated to contain a normal or high amount of phytate. Diets 

were formulated based on corn, soybean meal, Ca carbonate, and dicalcium phosphate, and the 

high-phytate diet also contained 400 g/kg full-fat rice bran. A Ca-free diet and a P-free diet were 

also formulated to determine the basal endogenous losses of Ca and P, respectively. All vitamins 

and minerals except Ca and P were included in all diets to meet current requirements (NRC, 

2012). Concentrations of Ca and P in the normal- and high-phytate diets met the requirement 

estimates for growing pigs, whereas the Ca and P in the 2 diets exceeded the requirement 

estimates for sows in less than 90 d of gestation by about 1.3 times (NRC, 2012). Daily feed 

allotments were provided in 2 equal meals that were provided at 0700 and 1600 h. The daily feed 

allowance for gestating sows was 1.5 times the maintenance energy requirement calculated based 

on the body weight (BW) of sows (i.e., 100 kcal of metabolizable energy/kg of BW0.75; NRC, 

2012), and growing pigs were provided feed in an amount that was calculated as 3 times the 

maintenance energy requirement (i.e., 197 kcal of metabolizable energy/kg of BW0.60; NRC, 

2012). Orts were collected after feeding to calculate total feed intake by growing pigs and sows. 

Water was available at all times. 
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Analysis Animals and Housing 

A total of 32 gestating sows (BW = 248.8 ± 20.7 kg; parity = 2.48 ± 1.26; d of gestation 

= 40 ± 5 d) were allotted to a randomized complete block design with 4 diets and BW and group 

as the blocks. There were 4 groups with 2 sows per diet in each group for a total of 8 replicate 

sows per diet. Before the start of the experiment, sows were fed a standard gestation diets that 

contained 0.72% Ca and 0.53% P. Sows were housed individually in metabolism crates that were 

equipped with fully slatted floors, a feeder, and a cup waterer. A screen floor and a urine pan 

were installed below the slatted floor. 

Thirty-two growing barrows (initial BW = 19.8 ± 1.0 kg) were also housed individually 

in metabolism crates and allotted a randomized complete block design with 4 diets and BW and 

group as blocks. There were 16 pigs per group and 4 replicate pigs per diet based on the BW of 

pigs within each group and, therefore, there were a total of 8 replicate pigs per diet. 

Method of Collection  

The experimental period lasted 10 d with the initial 4 d being the adaptation period to the 

diets followed by 4 d of total collection of feces and urine using the marker to marker procedure 

(Adeola, 2001). A 4-d adaptation period was used to reduce the length of feeding the Ca-free and 

P-free diets as much as possible to prevent bone damage to the pigs. Feces and urine were 

collected separately. Fecal collection was initiated when the first marker (i.e., indigo carmine) 

that was supplemented in the morning meal on d 5 appeared in the feces and ceased when the 

second marker (i.e., ferric oxide), which was added to the morning meal on d 9, appeared 

(Adeola, 2001). Feces were stored at ‒20 °C as soon as collected. 

Urine collections were initiated on d 5 at 0900 h and ceased on d 9 at 0900 h. Urine was 

collected in buckets placed under the metabolism crates with 50 mL of 3N HCl. Buckets were 
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emptied daily, the weight of the collected urine was recorded, and 10% of the collected urine was 

stored at ‒20 °C until subsampling. 

Chemical Analysis 

At the conclusion of the experiment, fecal samples were pooled within animal, dried at 

65 °C in a forced air oven, and finely ground using a Wiley mill (Model 4; Thomas Scientific, 

Swedesboro, NJ) through a 1-mm screen. Urine samples were thawed and mixed within animal 

and subsamples were collected for analysis. 

Calcium and P in ingredients, diets, feces, and urine samples were analyzed by 

inductively coupled plasma spectroscopy (AOAC Int., 2007; method 985.01 A, B, and C) after 

wet ash sample preparation [AOAC Int., 2007; method 975.03 B(b)]. Feed ingredients and diets 

were also analyzed for phytate-bound P (Megazyme method; ESC, Ystrad Mynach, UK). All 

ingredient and diet samples were analyzed for dry matter (DM; AOAC Int., 2007; method 

930.15), ash (AOAC Int., 2007; method 942.05), and gross energy using an isoperibol bomb 

calorimeter (Model 6300; Parr Instruments, Moline, IL). Fecal samples were also analyzed for 

DM. Crude protein in feed ingredients and diets was analyzed by combustion (AOAC Int., 2007; 

method 990.03) using an Elementar Rapid N-cube Protein/Nitrogen Apparatus (Elementar 

Americas Inc., Mt Laurel, NJ). Acid-hydrolyzed ether extract in ingredient and diet samples 

were analyzed by acid hydrolysis using 3N HCl (Ankom HCl Hydrolysis System, Ankom 

Technology, Macedon, NY) followed by fat extraction (Ankom XT-15 Extractor, Ankom 

Technology, Macedon, NY). Ingredients and diets were also analyzed for acid detergent fiber 

and neutral detergent fiber using Ankom Technology method 12 and 13, respectively (Ankom 

2000 Fiber Analyzer, Ankom Technology, Macedon, NY). All chemical analyses were 

performed in duplicates with the exception that Ca in diets were analyzed in quadruplicates. 
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Calculations 

The ATTD of Ca and P in experimental diets was calculated using Eq. 5.1 (Almeida and 

Stein, 2010): 

intake of Ca or P - output of Ca or P
ATTD of Ca or P = 

intake of Ca or P
   [5.1] 

where Ca and P intake and output in feces are expressed as gram per day. 

Basal endogenous losses of Ca and P that were estimated as the fecal flow of Ca and P 

from animals fed the Ca- and P-free diets were expressed as gram per kilogram of DM intake 

(DMI) were used to calculate the STTD of Ca and P (Eq. 5.2; Almeida and Stein, 2010): 

basal endogenous loss of Ca or P
STTD of Ca or P = ATTD of Ca or P +  

intake of Ca or P
. [5.2] 

Basal endogenous losses of Ca and P expressed as gram per day from pigs fed the 

normal- and high-phytate diets were calculated by multiplying the respective values for basal 

endogenous losses of Ca and P by the daily DMI of pigs. 

The retention of Ca and P expressed as gram per day was calculated using Eq. 5.3 

(Petersen and Stein, 2006): 

Retention of Ca or P = intake of Ca or P - (fecal + urinary output of Ca or P)  [5.3] 

where Ca and P intake and output in feces and urine are expressed as gram per day. 

The retention of Ca and P was calculated using Eq. 5.4 (Petersen and Stein, 2006): 

retention of Ca or P
Retention of Ca or P = 

intake of Ca or P
     [5.4] 

where intake of Ca and P and retention of Ca and P are expressed as gram per day. 
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Statistical Analysis 

Normality of data was verified using the PROC UNIVARIATE of SAS (SAS Inst. Inc., 

Cary, NC). Outliers were identified as values that were plotted outside ‘inner fences’ within 

treatment (Tukey, 1977). The animal was the experimental unit for all analyses. Data were 

analyzed using PROC MIXED of SAS that provided residual maximum likelihood estimates of 

variance and covariance components in the model. The statistical model included physiological 

state, phytate level in the diet, and the interactions between physiological state and phytate level 

as fixed effects, and group and replicate within group as random effects. To explain interactions, 

mean separation was conducted by the PDIFF option with the Tukey’s adjustment. The basal 

endogenous losses of Ca and P by gestating sows and growing pigs that were fed Ca-free or P-

free diets were also compared using a Student’s unpaired t-test. Statistical significance was 

considered at P < 0.05. 

 

RESULTS 

Gestating sows and growing pigs remained healthy during the experiment and very little 

feed refusals were observed. The analyzed concentrations of Ca, total P, and phytate in all 

experimental diets were in agreement with expected values, and phytate-bound P and phytate-

bound P relative to total P in the high-phytate diet was greater than in the normal-phytate diet 

(Table 5.3). 

Basal Endogenous Losses of Ca and P 

The basal endogenous loss of Ca was 1.58 g/kg of DMI and 0.43 g/kg of DMI for 

gestating sows and growing pigs, respectively, and the basal endogenous loss of Ca from 

gestating sows was greater (P < 0.001) than from growing pigs (Table 5.4). The basal 
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endogenous loss of P was 0.78 g/kg DMI from gestating sows and this value was greater (P = 

0.011) than the basal endogenous loss of P from growing pigs (0.16 g/kg of DMI). 

Digestibility and Retention of Ca 

Feed intake and Ca intake by gestating sows were greater than by growing pigs (P < 

0.001; Table 5.5). The ATTD of DM was not affected by physiological state, but animals fed the 

normal-phytate diet had greater (P < 0.001) ATTD of DM than animals fed the high-phytate diet. 

Fecal excretion by gestating sows was greater than by growing pigs and the difference was 

greater if the high-phytate diet was fed than if the normal-phytate diet was provided 

(physiological state × phytate level interaction, P < 0.001). Urine excretion by gestating sows 

was also greater (P = 0.027) than by growing pigs. Gestating sows had greater (P < 0.001) fecal 

Ca output than growing pigs and animals fed the high-phytate diet had greater (P < 0.001) fecal 

Ca output than if the the normal-phytate diet was fed. Gestating sows fed the normal-phytate diet 

had greater urine Ca output than growing pigs fed the normal-phytate diet, but the urine Ca 

output was not different between gestating sows and growing pigs fed the high-phytate diet 

(physiological state × phytate level interaction, P = 0.024). Phytate level did not affect the 

absorbed Ca, ATTD of Ca, STTD of Ca, or Ca retention in gestating sows, but the absorbed Ca, 

ATTD of Ca, STTD of Ca, or Ca retention were greater if growing pigs were fed the normal-

phytate diet than the high-phytate diet (physiological state × phytate level interaction, P < 0.01). 

Regardless of dietary treatment, gestating sows had reduced (P < 0.001) digestibility and 

retention of Ca compared with growing pigs. 

Daily basal endogenous loss of Ca expressed as gram per day was greater for the high-

phytate diet than for the normal-phytate diet if fed to gestating sows, but for growing pigs, no 

difference between the 2 diet types was observed for the daily basal endogenous loss of Ca 
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(physiological state × phytate level interaction, P = 0.031). However, regardless of dietary 

treatment, the daily basal endogenous loss of Ca was much greater (P < 0.001) in gestating sows 

than in growing pigs. 

Digestibility and Retention of P 

Phosphorus intake by gestating sows was greater than by growing pigs and the difference 

was greater if the high-phytate diet rather than the normal-phytate diet was fed (physiological 

state × phytate level interaction; P < 0.001; Table 5.6). Fecal P output was greater if the high-

phytate diet rather than the normal-phytate diet was fed and the difference was greater for 

growing pigs than for gestating sows (physiological state × phytate level interaction; P < 0.001). 

Gestating sows had less (P = 0.036) absorbed P than growing pigs, and the absorbed P was 

greater (P = 0.049) if pigs were fed the normal-phytate diet compared with the high-phytate diet. 

The ATTD of P was greater if growing pigs were fed the normal-phytate diet rather than the 

high-phytate diet, but the ATTD of P was not affected by dietary treatment if diets were fed to 

gestating sows (physiological state × phytate level interaction; P = 0.001). Likewise, the STTD 

of P was greater if pigs were fed the normal-phytate diet rather than the high-phytate diet, but the 

difference was greater for growing pigs than for gestating sows (physiological state × phytate 

level interaction; P = 0.002). Urine P output was greater (P < 0.001) in gestating sows compared 

with growing pigs and gestating sows had less (P < 0.001) P retention compared with growing 

pigs. Phosphorus retention by growing pigs fed the normal-phytate diet was greater than if pigs 

were fed the high-phytate diet, but P retention by gestating sows was not affected by phytate 

level (physiological state × phytate level interaction; P < 0.001). Regardless of dietary treatment, 

gestating sows had reduced (P < 0.001) digestibility and retention of P compared with growing 

pigs. 
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Daily basal endogenous loss of P by gestating sows expressed as gram per day was 

greater for the high-phytate diet than the normal-phytate diet, but for growing pigs, no difference 

between the 2 diet types was observed (physiological state × phytate level interaction, P = 

0.028). However, regardless of dietary treatment, the daily basal endogenous loss of P was much 

greater (P < 0.001) in gestating sows than in growing pigs. 

 

DISCUSSION 

The difference in feed intake between gestating sows and growing pigs was due to 

differences in BW between gestating sows and growing pigs (NRC, 2012), but both groups of 

animals were fed close to what is common in practical production. 

Digestibility and Retention of Ca and P in Diets Fed to Gestating Sows 

Values for the ATTD of Ca and P in the normal-phytate diet obtained in this study were 

within the range of the values previously reported for sows fed corn, soybean meal, and 

inorganic Ca and P-based diets at d 75 to 105 of gestation (Nyachoti et al., 2006; Jang et al., 

2014; Darriet et al., 2017; Lee et al., 2018). The ATTD of Ca and P in feed phosphates is greater 

compared with plant feed ingredients fed to gestating sows (Nyachoti et al., 2006; Jang et al., 

2014) and the ATTD of Ca in Ca carbonate fed to growing pigs is less compared with dicalcium 

phosphate or monocalcium phosphate (González-Vega et al., 2015b). It is possible that the day 

of pregnancy affects the ATTD of Ca and P because late-gestation sows have greater digestibility 

compared with mid-gestation sows (Kemme et al., 1997; Nyachoti et al., 2006; Lee et al., 

2019a). Dietary vitamin D may also affect values for the absorption of Ca and P (Lei et al., 

1994), but it is unlikely vitamin D limited Ca absorption in the present experiment because 

vitamin D inclusion in all diets exceeded the requirement (NRC, 2012). 
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It is likely that the very low retention of Ca and P and the increases in urine Ca and P that 

were observed for gestating sows are a result of sows having adequate stores of Ca and P, 

therefore, sows had no need for retaining additional Ca and P. Ash contents of bones may be 

greater in sows than in gilts, indicating that sows accumulate Ca and P in bones over time 

(Giesemann et al., 1998). A model that calculates the P requirement for gestating sows indicates 

that requirements are very low in multiparous sows until mid-gestation and almost no P is 

needed by the fetuses (Bikker and Blok, 2017). However, the requirement increases in late 

gestation and thus coincides with increased digestibility and retention of Ca and P (Lee et al., 

2019a). 

Digestibility and Retention of Ca and P in Diets Fed to Growing Pigs 

Values for the ATTD and STTD of Ca and P in the normal-phytate diet were in 

agreement with reported values (Almeida et al., 2013; González-Vega et al., 2016b; Stein et al., 

2016). The ATTD and STTD of Ca and P in the high-phytate diet were also within the range of 

reported values (Trujillo et al., 2010; Casas and Stein, 2015; Lucca et al., 2017). The basal 

endogenous loss of Ca obtained from growing pigs agreed with data from other studies in which 

a corn-based Ca-free diet was used (González-Vega et al., 2015a; Merriman and Stein, 2016; 

Blavi et al., 2017) and the basal endogenous loss of P also concurred with reported values for the 

basal endogenous loss of P (NRC, 2012). Values for the retention of Ca and P that were 

expressed as gram per day in growing pigs fed all diets also were in agreement with published 

data (Mroz et al., 1994; González-Vega et al., 2016b). However, the retention of Ca and P (as 

percentage of Ca intake) varied between diets and also varies among previous experiments, 

which most likely is because the body will reduce retention if intake exceeds the requirement for 

Ca and P (Symeou et al., 2014; González-Vega et al., 2016a).  
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Effect of Phytate on Ca and P Balance 

The observation that the digestibility of Ca and P in the high-phytate diet fed to growing 

pigs was lower than in the normal-phytate diet is likely due to the reduced level of dicalcium 

phosphate and the greater level of calcium carbonate and phytate in the high-phytate diet 

compared with the normal-phytate diet. Phytate-P is not likely hydrolyzed and absorbed into the 

body of pigs because pigs does not secret the endogenous phytase and thus P digestibility in feed 

ingredients containing higher amount of phytate-P is relatively lower compared with lower 

phytate-P. The digestibility of Ca in dicalcium phosphate is greater than in calcium carbonate 

(González-Vega et al., 2015b) and, therefore, an increase in the proportion of Ca from calcium 

carbonate in the diet may contribute to reduced digestibility of Ca in the high-phytate diet. 

Phytate binds positively charged ions including Ca2+ because of the negatively charged reactive 

sites on the phytate molecule, which may result in chelated Ca-phytate complexes (Selle et al., 

2009). Unlike Ca in monocalcium phosphate or dicalcium phosphate, Ca from calcium carbonate 

may chelate with phytate molecules (González-Vega et al., 2015b), and, therefore, if more 

calcium carbonate is used in the diet, the digestibility of not only Ca, but also P, may be reduced.  

The observed interactions between the physiological state and phytate level for the STTD 

of Ca and P and Ca and P retention indicate that growing pigs were more likely to be affected by 

dietary phytate than gestating sows. A negative correlation between digestibility of Ca and P and 

dietary phytate by growing pigs was also reported (Almaguer et al., 2014; Lee et al., 2018). 

Likewise, insoluble fiber or phytate in diets may decrease the absorption of Ca or P due to less 

transit time in the gut (Nortey et al., 2007; Hill et al., 2008). In this experiment, therefore, it is 

possible that the insoluble fiber in rice bran decreased the absorption of Ca and P in the intestines 

of growing pigs. However, it is not clear why gestating sows and growing pigs have different 
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responses to dietary phytate for Ca and P digestibility and retention in the body, but it is also 

possible that the response to the insoluble fiber decreases if the passage rate in the 

gastrointestinal tract of gestating sows is slower compared with growing pigs. Further research 

investigating factors affecting digestion and retention of Ca and P in gestating sows is needed. 

Comparative Digestibility and Retention of Ca and P in Gestating Sows and Growing Pigs 

The basal endogenous losses of Ca and P were in agreement with values previously 

reported for sows in mid-gestation (Bikker et al., 2017; Lee et al., 2019a). The observation that 

the basal endogenous loss of P which was expressed in miligram per kilogram of DMI was 

greater in sows compared with growing pigs concurred with the previous data (Bikker et al., 

2017). The authors indicated that the difference was from differences in body size of pigs rather 

than from DMI. This was also demonstrated in this study (data not shown), but values for the 

basal endogenous loss of P were still different between the 2 groups of pigs in both experiments, 

which means that the exact reason for the greater basal endogenous loss of P by sows remains to 

be elucidated. 

The observation that the ATTD of Ca and P in growing pigs is greater than in sows 

concurs with previous data (Kemme et al., 1997; Lee et al., 2018), but to our knowledge, no 

comparative values for the STTD of Ca and P or the basal endogenous losses of Ca and P 

between gestating sows and growing pigs have been reported. It is unlikely that the difference in 

feed intake is the main reason for this difference because feed intake of sows does not affect 

digestibility of Ca and P (Lee et al., 2018). The greater endogenous losses of Ca and P from 

gestating sows than from growing pigs may result in a reduced ATTD of Ca and P in sows 

compared with growing pigs. However, the current results indicate that digestibility of Ca and P 

in gestating sows is much less than in growing pigs, even if values are corrected for the greater 
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basal endogenous losses of Ca and P by gestating sows as is the case for calculation of STTD 

values. Differences in the basal endogenous losses, therefore, do not explain the differences 

observed for STTD values and the present data indicate that there are physiological differences 

between sows and growing pigs that result in differences in ATTD and STTD of Ca and P. It is 

possible that this is related to the fact that gestating sows have a requirement for Ca and P that is 

close to the maintenance requirement, whereas growing pigs have a requirement for growth and 

bone development in addition to the requirement for maintenance (NRC, 2012; Bikker and Blok, 

2017), but additional research is needed to address this hypothesis. 

 

CONCLUSION 

Gestating sows have reduced digestibility and retention of Ca and P, but increased basal 

endogenous losses of Ca and P, compared with growing pigs. As a consequence, it may not 

always be accurate to formulate diets for gestating sows using ATTD or STTD values for Ca and 

P that were obtained in growing pigs. 
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TABLES 

Table 5.1. Analyzed nutrient composition of feed ingredients (as-is basis) 

1SBM = soybean meal; DCP = dicalcium phosphate 

2AEE = acid-hydrolyzed ether extract. 

3Phytate was calculated by dividing the analyzed phytate-bound P by 0.282 (Tran and 

Sauvant, 2004). 

4Non-phytate P was calculated as the difference between total P and phytate-bound P.  

Item Corn SBM1 Rice bran Limestone DCP1 

Dry matter, % 86.57 90.72 92.47 100.02 93.94 

Gross energy, kcal/kg 3,859 4,240 4,697 - - 

Crude protein, % 7.04 50.52 13.84 - - 

Ash, % 0.87 5.89 8.78 90.63 84.10 

AEE2, % 2.90 0.96 18.17 - - 

Neutral detergent fiber, % 8.74 4.94 16.50 - - 

Acid detergent fiber, % 2.46 2.33 6.76 - - 

Ca, % 0.01 0.34 0.05 39.0 22.0 

Total P, % 0.24 0.72 1.98 0.01 18.4 

Phytate, % 0.74 1.70 6.52 - - 

Phytate-bound P3, % 0.21 0.48 1.84 - - 

Phytate-bound P, % of total P 87.50 66.67 92.93 - - 

Non-phytate P4, % 0.03 0.24 0.14 - - 
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Table 5.2. Ingredient composition of experimental diets fed to gestating sows and growing pigs 

(as-fed basis) 

 Phytate level 

Ca-free P-free 
 Ingredient, % Normal High 

 Ground corn 72.69 38.29 76.75 - 

 Soybean meal, 48% crude protein 24.00 19.00 - - 

 Rice bran, full-fat - 40.00 - - 

 Cornstarch - - - 46.24 

 Potato protein concentrate - - 17.00 - 

 Gelatin - - - 20.00 

 Sucrose - - - 20.00 

 Soybean oil - - 4.00 4.00 

 Cellulose - - - 5.00 

 L-Lys·HCl 0.40 0.37 - 0.45 

 DL-Met 0.10 0.10 - 0.14 

 L-Thr 0.10 0.10 - 0.29 

 L-Trp - - - 0.17 

 L-His - - - 0.23 

 L-Ile - - - 0.32 

 L-Leu - - - 0.58 

 L-Val - - - 0.28 

 Ground limestone 0.80 1.35 - 1.20 

 Dicalcium phosphate 1.30 0.18 - - 

 Mono sodium phosphate - - 1.15 - 

 Potassium carbonate - - 0.40 0.40 
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1 The vitamin-mineral premix provided the following quantities of vitamins and micro 

minerals per kg of complete diet: vitamin A as retinyl acetate, 11,136 IU; vitamin D3 as 

cholecalciferol, 2,208 IU; vitamin E as DL-alpha tocopheryl acetate, 66 IU; vitamin K as 

menadione dimethylprimidinol bisulfite, 1.42 mg; thiamin as thiamine mononitrate, 0.24 mg; 

riboflavin, 6.59 mg; pyridoxine as pyridoxine hydrochloride, 0.24 mg; vitamin B12, 0.03 mg; D-

pantothenic acid as D-calcium pantothenate, 23.5 mg; niacin, 44.1 mg; folic acid, 1.59 mg; biotin, 

0.44 mg; Cu, 20 mg as copper sulfate; Fe, 126 mg as iron sulfate; I, 1.26 mg as ethylenediamine 

dihydriodide; Mn, 60.2 mg as manganous sulfate; Se, 0.25 mg as sodium selenite and selenium 

yeast; and Zn, 124.9 mg as zinc sulfate. 

  

Table 5.2. (Cont.) 

 

    

 Magnesium oxide - - 0.10 0.10 

 Salt 0.40 0.40 0.40 0.40 

 Vitamin-mineral premix2 0.20 0.20 0.20 0.20 
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Table 5.3. Analyzed nutrient composition of experimental diets fed to gestating sows and 

growing pigs (as-fed basis) 

1 Values for metabolizable energy were calculated based on the metabolizable energy in 

feed ingredients reported in NRC (2012). 

2Phytate was calculated by dividing the analyzed phytate-bound P by 0.282 (Tran and 

Sauvant, 2004). 

 3Non-phytate P was calculated as the difference between total P and phytate-bound P. 

 Phytate level  

Ca-free P-free 
Item, % Normal High  

Dry matter 88.99 91.68  89.27 94.17 

Gross energy, kcal/kg 3,809 4,212  4,217 4,081 

Metabolizable energy1, kcal/kg 3,285 3,150  3,560 3,872 

Crude protein 17.25 18.40  18.94 21.75 

Ash 4.58 6.61  2.67 2.54 

Acid-hydrolyzed ether extract 2.70 8.94  7.16 3.87 

Neutral detergent fiber 5.98 10.95  6.22 4.67 

Acid detergent fiber 1.43 4.28  1.73 3.95 

Ca 0.73 0.72  0.02 0.50 

Total P 0.61 1.06  0.50 0.01 

Phytate2 0.96 2.84  - - 

Phytate-bound P 0.27 0.80  - - 

Phytate-bound P:total P 44.48 75.47  - - 

Non-phytate P3 0.34 0.26  - - 
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Table 5.4. Basal endogenous losses of Ca and P from gestating sows and growing pigs fed Ca-

free and P-free diets1 

Item Gestating sows Growing pigs 
 

SED 
 

P-value 

Basal endogenous loss, g/kg dry matter intake 
    

Ca 1.58 0.43 
 

0.12 
 

< 0.001 

P 0.78 0.16 
 

0.17 
 

0.011 

1 Each mean for gestating sows and growing pigs represents 7 observations. 
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Table 5.5. Apparent total tract digestibility (ATTD) and standardized total tract digestibility (STTD) and retention of Ca in experimental 

diets fed to gestating sows and growing pigs1 

Physiological state Gestating sows 
 

Growing pigs 
   

P-value2 

Item                                                Phytate Normal High 
 

Normal High 
 

SEM 
 

State Phytate S × P 

(S) (P) 

Initial BW, kg 251.94 249.27  19.72 19.77 
 

4.65 
 

< 0.001 0.752 0.743 

Feed intake, kg/d 2.67 2.78  1.02 1.05 
 

0.06 
 

< 0.001 0.084 0.308 

Fecal excretion, kg/d 0.25b 0.51a  0.10c 0.21b  0.01  < 0.001 < 0.001 < 0.001 

ATTD of dry matter, % 90.07 81.62  90.19 80.88  0.48  0.550 < 0.001 0.349 

Urine excretion, kg/d 15.84 12.87  4.35 3.94 
 

4.37 
 

0.027 0.701 0.772 

Ca intake, g/d 18.66 20.22  7.15 7.65 
 

0.42 
 

< 0.001 0.002 0.063 

Fecal Ca output, g/d 17.66 19.02 
 

1.95 4.64 
 

0.74 
 

< 0.001 < 0.001 0.081 

Absorbed Ca, g/d 1.00b 1.23b 
 

5.19a 3.01b 
 

0.53 
 

0.001 0.011 0.003 

ATTD of Ca, % 5.52c 6.38c 
 

72.76a 39.33b 
 

3.00 
 

< 0.001 < 0.001 < 0.001 

Basal endogenous Ca loss, g/d 3.75b 4.01a 
 

0.40c 0.42c 
 

0.08 
 

< 0.001 0.013 0.031 

STTD of Ca3, % 25.59c 26.23c 
 

78.30a 44.80b 
 

3.00 
 

< 0.001 < 0.001 < 0.001 

Urine Ca output, g/d 0.80a 0.54ab  0.26b 0.51ab 
 

0.11 
 

0.013 0.976 0.024 



125 

 

Table 5.5. (Cont.)            

Ca retention, g/d 0.21b 0.64b 
 

4.94a 2.50b 
 

0.58 
 

0.001 0.024 0.003 

Ca retention, % of Ca intake 1.22c 3.70c   69.14a 32.68b   3.27   < 0.001 < 0.001 < 0.001 

a-c Within a row, means without a common superscript differ (P < 0.05). 

1 Each mean for experimental diets from gestating sows and growing pigs represents 8 observations, with the exceptions of the 

high-phytate diet for gestating sows (n = 7). 

2 State = effect of physiological states; Phytate = effect of phytate level that is normal-phytate or high-phytate in diets. 

3 Basal endogenous loss of Ca from gestating sows = 1.58 g/kg dry matter intake; basal endogenous loss of Ca from growing 

pigs = 0.43 g/kg dry matter intake.  
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Table 5.6. Apparent total tract digestibility (ATTD) and standardized total tract digestibility (STTD) and retention of P in 

experimental diets fed to gestating sows and growing pigs1 

Physiological state Gestating sows 
 

Growing pigs 
   

P-value2 

Item                                                 Phytate Normal High 
 

Normal High 
 

SEM 
 

State Phytate S × P 

(S) (P) 

P intake, g/d 16.09b 30.36a  6.16d 11.46c  0.55  < 0.001 < 0.001 < 0.001 

Fecal P output, g/d 13.53b 28.85a  2.43d 8.49c  0.81  < 0.001 < 0.001 < 0.001 

Absorbed P, g/d 2.56 1.55  3.73 2.97  0.49  0.036 0.049 0.762 

ATTD of P, % 16.21bc 5.24c  60.62a 25.93b  2.98  < 0.001 < 0.001 0.001 

Basal endogenous P loss, g/d 1.87b 2.00a  0.15c 0.16c  0.04  < 0.001 0.015 0.028 

STTD of P3, % 27.80b 11.83c  63.02a 27.30b  2.98  < 0.001 < 0.001 0.002 

Urine P output, g/d 2.39 2.07  0.12 0.19  0.17  < 0.001 0.438 0.221 

P retention, g/d 0.17 -0.51  3.61 2.78  0.47  < 0.001 0.055 0.832 

P retention, % of P intake 1.23c -1.39c   58.68a 24.25b   2.58   < 0.001 < 0.001 < 0.001 

a-d Within a row, means without a common superscript differ (P < 0.05). 

1 Each mean for experimental diets from gestating sows and growing pigs represents 8 observations, with the exceptions of the 

high-phytate diet for gestating sows (n = 7). 

2 State = effect of physiological states; Phytate = effect of phytate level that is normal-phytate or high-phytate in diets. 
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Table 5.6. (Cont.) 

3 Basal endogenous loss of P from gestating sows = 0.78 g/kg dry matter intake; basal endogenous loss of P from growing pigs 

= 0.16 g/kg dry matter intake. 
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CHAPTER 6: BASAL ENDOGENOUS LOSS, STANDARDIZED TOTAL TRACT 

DIGESTIBILITY OF CALCIUM IN CALCIUM CARBONATE, AND RETENTION OF 

CALCIUM IN GESTATING SOWS CHANGE DURING GESTATION, BUT 

MICROBIAL PHYTASE REDUCES BASAL ENDOGENOUS LOSS OF CALCIUM 

 

ABSTRACT 

The objective was to test the hypothesis that the standardized total tract digestibility (STTD) of 

Ca and the response to microbial phytase on STTD of Ca and apparent total tract digestibility 

(ATTD) of P in diets fed to gestating sows are constant throughout gestation. The second 

objective was to test the hypothesis that retention of Ca and P does not change during gestation. 

Thirty six gestating sows (parity = 3.3 ± 1.5; d of gestation = 7 d) were allotted to 4 diets. Two 

diets containing 0 or 500 units of microbial phytase per kilogram were based on corn, potato 

protein concentrate, and calcium carbonate. Two Ca-free diets were formulated without or with 

microbial phytase to estimate basal endogenous loss of Ca. Daily feed allowance was 1.5 times 

the maintenance energy requirement. Sows were housed individually in gestation stalls and fed a 

common gestation diet, but they were moved to metabolism crates from d 7 to 20 (early-

gestation), d 49 to 62 (mid-gestation), and again from d 91 to 104 (late-gestation). When sows 

were in metabolism crates, they were fed experimental diets and feces and urine were collected 

for 4 d after 4 d of adaptation. Results indicated that outcomes were not influenced by the 

interaction between period of gestation and dietary phytase. The basal endogenous loss of Ca 

was greater (P < 0.05) by sows in early-gestation than by sows in mid- or late-gestation, but 

supplementation of microbial phytase to the Ca-free diet decreased (P < 0.01) the basal 

endogenous loss of Ca and tended (P = 0.099) to increase ATTD of P. Supplementation of 
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microbial phytase did not affect ATTD of DM, STTD of Ca, Ca retention, ATTD of P, or P 

retention in sows fed the calcium carbonate-containing diet. The ATTD of DM was not affected 

by period of gestation, but the ATTD of Ca, the ATTD of P, and the retention of Ca were least 

(P < 0.05) in mid-gestation, followed by early- and late-gestation, respectively, and the STTD of 

Ca in mid-gestation was also reduced (P < 0.05) compared with sows in early- or late-gestation. 

Phosphorus retention was greater (P < 0.05) in late-gestation than in the earlier periods. In 

conclusion, Ca retention was less negative and ATTD of P tended to increase with 

supplementation of microbial phytase to the Ca-free diet regardless of gestation period. The basal 

endogenous loss, STTD of Ca, ATTD of P, and retention of Ca and P in gestating sows change 

during gestation with the greatest digestibility values observed in late gestation. 

Key words: calcium, digestibility, phosphorus, phytase, retention, sows 

 

INTRODUCTION 

Standardized total tract digestibility (STTD) of Ca has been determined for most Ca 

containing ingredients fed to growing pigs (González-Vega et al., 2015a; Stein et al., 2016; 

Zhang et al., 2016), but the STTD of Ca by sows in mid-gestation is less than by growing pigs 

(Lee et al., 2018). As a consequence, if diets for gestating sows are formulated using STTD 

values determined in growing pigs, provision of digestible Ca will be less than calculated. 

Exogenous phytase increases not only P digestibility, but also Ca digestibility, in diets 

and feed ingredients including Ca carbonate when fed to growing pigs (Almeida et al., 2013; 

González-Vega et al., 2015a). The efficacy of phytase to release Ca and P is believed to be 

influenced by the physiological status of the animal with phytase fed to sows in mid-gestation 

releasing less Ca and P compared with growing pigs or sows in late-gestation (Kemme et al., 
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1997; Sulabo, 2004). It is also possible that the digestibility of Ca and P by sows changes during 

gestation with sows in late-gestation having greater digestibility than sows in mid-gestation 

(Kemme et al., 1997; Jongbloed et al., 2004; 2013; Nyachoti et al., 2006). However, to our 

knowledge, possible changes during gestation of the basal endogenous loss, the STTD of Ca, and 

retention of Ca and P have not been reported and it is, therefore, not known if values for STTD 

of Ca or retention of Ca and P obtained in a specific time in gestation is representative of the 

entire gestation period. 

Therefore, the objective of this experiment was to test the hypothesis that basal 

endogenous loss of Ca, the STTD of Ca in Ca carbonate, and the response to microbial phytase 

on STTD of Ca and ATTD of P in P-adequate-corn-based diets fed to gestating sows are constant 

throughout gestation. The second objective was to test the hypothesis that retention of Ca and P 

does not change during gestation. 

 

MATERIALS AND METHODS 

The Institutional Animal Care and Use Committee at the University of Illinois reviewed 

and approved the protocol for the experiment before the animal work was initiated. Camborough 

sows (PIC, Hendersonville, TN) were used in the experiment.  

Animals, Housing, and Sample Collection 

Thirty six gestating sows (initial BW: 219.1 ± 33.4 kg; average parity: 3.3 ± 1.5) that 

were one week post-breeding were allotted to 3 blocks of 12 sows using a randomized complete 

block design. Four diets were fed to the 12 sows in each block; thus, there was a total of 9 

replicate sows for each treatment. 

Experimental diets included a corn-based diet in which Ca carbonate was the sole source 
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of Ca and a Ca-free diet (Tables 6.1 and 6.2). Each diet was prepared with no microbial phytase 

and with addition of 500 units of phytase (Quantum Blue®; AB Vista, Marlborough, United 

Kingdom). All vitamins and minerals except Ca in the Ca-free diet, were included in all diets to 

meet estimated nutrient requirements (NRC, 2012). Daily feed allotments were provided in 2 

equal meals that were fed at 0800 and 1600 h. Daily feed allowance was 1.5 times the 

maintenance energy requirement for gestating sows (i.e., 100 kcal of ME/kg of BW0.75; NRC, 

2012). Water was available at all times. 

Sows were housed individually in gestation stalls throughout gestation. However, from d 

7 to 20 (early-gestation), d 49 to 62 (mid-gestation), and again from d 91 to 104 (late-gestation), 

sows were moved to metabolism crates, where they were fed 1 of the 4 experimental diets. Sows 

were fed the same experimental diet every time they were placed in the metabolism crates, but 

when sows were housed in the gestation stalls, they were fed a common conventional gestation 

diet that was formulated to meet the requirement estimates for all nutrients (NRC, 2012). 

Metabolism crates were equipped with a feeder, a nipple drinker, and a fully slatted T-bar floor. 

A screen floor and a urine pan were installed below the T-bar floor to allow for collection of 

feces and urine, respectively. The initial 4 d of each period in the metabolism crates, which was 

considered the adaptation period to the diets. A 4-d adaptation period was used to reduce the 

length of feeding the Ca-free diet as much as possible to prevent bone damage to the sows. The 

adaptation period was followed by 4 d of fecal collection using the marker to marker procedure 

(Adeola, 2001). Fecal collection was initiated when the first marker (i.e., indigo carmine) 

appeared in the feces and ceased when the second marker (i.e., ferric oxide) appeared (Adeola, 

2001). Passage of the marker was expected to take up to 4 d, which is the reason sows were kept 

in the metabolism crates for 13 d to make sure the last marker had time to pass. Urine was 
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collected in buckets placed under the urine pans and 50 mL of 3N HCl was added to each bucket 

every morning. Buckets were emptied daily, the weight of the collected urine was recorded, and 

10% of the collected urine was stored at ‒20°C until subsampling. At the end of each collection 

period, sows were moved back to the gestation stalls. All sows were checked for pregnancy 

using an ultrasound scanner (VSS700 EZ Preg Checker; Veterinary Sales and Service Inc., 

Elmhurst, IL) on d 28 after breeding. Non-pregnant sows were removed from the experiment. 

At the conclusion of the experiment, urine samples were thawed and mixed within animal 

and collection period and subsamples were collected. Fecal samples were stored at ‒20°C as 

soon as collected, and at the conclusion of the experiment, samples were dried at 65°C in a 

forced air oven, finely ground through a 1-mm screen using a Wiley Mill (Model 4; Thomas 

Scientific, Swedesboro, NJ), and mixed within sow and collection period. A subsample of the 

ground feces was then collected. 

Chemical Analysis 

Calcium and P in corn, potato protein concentrate, calcium carbonate, diets, feces, and 

urine samples were analyzed by inductively coupled plasma spectroscopy (AOAC Int., 2007; 

method 985.01 A, B, and C) after wet ash sample preparation [AOAC Int., 2007; method 975.03 

B(b)]. Diets were analyzed for phytase activity (ESC, Ystrad Mynach, UK) by the ELISA 

method using Quantiplate Kits for Quantum Blue® and feed ingredients were also analyzed for 

phytate-bound P (Megazyme method; ESC, Ystrad Mynach, UK). All ingredient and diet 

samples were analyzed for DM (AOAC Int., 2007; method 930.15) and ash (AOAC Int., 2007; 

method 942.05). Crude protein in corn, potato protein concentrate, and diets was calculated as N 

× 6.25 and N was analyzed by combustion (AOAC Int., 2007; method 990.03) using a LECO 

FP628 Nitrogen Analyzer (LECO Corp., Saint Joseph, MI). Acid hydrolyzed ether extract in diet 
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samples was analyzed by acid hydrolysis using 3N HCl (Ankom HCl Hydrolysis System, Ankom 

Technology, Macedon, NY) followed by fat extraction (Ankom XT-15 Extractor, Ankom 

Technology, Macedon, NY). Diets were also analyzed for acid detergent fiber and neutral 

detergent fiber using Ankom Technology methods 12 and 13, respectively (Ankom 2000 Fiber 

Analyzer, Ankom Technology, Macedon, NY). 

Calculations 

The ATTD of DM, Ca, and P in experimental diets was calculated as previously outlined 

using Eq. [6.1] (Almeida and Stein, 2010): 

intake - output
ATTD =   100

intake
 ,      [6.1] 

where nutrient intake and output in feces are expressed as gram per day. 

Basal endogenous loss of Ca, which was estimated as the fecal flow of Ca from sows fed 

the Ca-free diet, was expressed as gram per kilogram of DM intake (DMI). The daily basal 

endogenous loss of Ca from sows fed the 2 diets containing Ca carbonate without or with 

microbial phytase was calculated by multiplying values for basal endogenous loss of Ca by the 

daily DMI of sows. 

Values for STTD of Ca (%) were calculated from Eq. [6.2] (Almeida and Stein, 2010): 

intake - (output - daily basal endogenous loss)
STTD =   100

intake
 ,   [6.2] 

where intake, output, and daily basal endogenous loss are in gram per day. 

Retention of Ca and P (%) in experimental diets was calculated using Eq. [6.3] 

(Fernández, 1995): 

intake - (fecal output + urinary output)
Retention =   100

intake
 ,  [6.3] 

where intake and fecal and urinary outputs are expressed as gram per day. 
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Statistical Analysis 

Normality of data was verified using the UNIVARIATE procedure (SAS Inst. Inc., Cary, 

NC). Outliers were identified as values that deviated from 1st- and 3rd-quartile by more than 3 

times the interquartile range within treatment. The sow was the experimental unit for all 

analyses. Data were analyzed as repeated measures using MIXED procedures of SAS. The 

statistical model included phytase, period of gestation, and the interaction between phytase and 

period of gestation as fixed effects and block and replicate within block as random effects. 

However, only a few interactions were observed and the final model, therefore, included only the 

main effects of phytase and period of gestation. In the few instances where an interaction 

between phytase and period of gestation was observed, the SLICE option of SAS was used to 

analyze data. Least square means were separated using the PDIFF option with Tukey’s 

adjustment. Statistical significance and tendency were considered at P < 0.05 and 0.05 ≤ P < 

0.10, respectively. 

 

RESULTS 

The analyzed concentrations of Ca, total P, phytate, and phytase were in agreement with 

formulated values (Table 6.3). Sows remained healthy during the experimental period and very 

little feed refusals were observed with the exception that one sow refused to consume the 

assigned diet and had to be removed. One sow was removed from the experiment because of 

abortion. Four of the 36 sows that were allotted to the experiment were not pregnant and had to 

be removed. Therefore, there were 30 sows that completed all 3 periods of the experiment. The 

number of sows per treatment that completed the experiment was 8 for all dietary treatments 

except for the diet containing calcium carbonate without supplemental phytase (n = 6). A sow in 
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early-gestation fed the Ca-free diet with phytase was identified as an outlier in most response 

criteria. Therefore, data from this sow were not included in the final analysis. 

Basal Endogenous Loss of Ca and Balance of P by Sows Fed Ca-Free Diets 

Interactions between period of gestation and phytase were not observed for sows fed the 

Ca-free diets (data not shown). Supplementation of microbial phytase reduced (P < 0.01) fecal 

Ca output, which resulted in a reduction (P < 0.01) in the basal endogenous loss of Ca (Table 

6.4). Calcium retention was less negative (P < 0.05) if microbial phytase was used than if no 

phytase was included in the diet. The ATTD of DM and P retention were not affected by 

microbial phytase, but the ATTD of P tended to be greater (P = 0.099) if sows were fed the diet 

with supplemental phytase. 

Feed intake increased (P < 0.05) from early- to mid- to late-gestation and the ATTD of 

DM was greater (P < 0.05) in sows in late-gestation than in early-gestation. Fecal Ca output was 

reduced (P < 0.05) from early- and mid-gestation to late-gestation. The basal endogenous loss of 

Ca (milligram per kilogram of DMI) was greatest (P < 0.05) by sows in early-gestation, followed 

by sows in mid- and late-gestation periods, respectively. There was no gestation period effect for 

total urinary excretion, but urine Ca output was greater (P < 0.05) in early- or mid-gestation 

periods than in late-gestation, resulting in less Ca retention (P < 0.05) in early- or mid-gestation 

periods compared with the late-gestation period. The increased feed intake from early- to mid- to 

late-gestation periods resulted in the greatest (P < 0.05) P intake by sows in the late-gestation 

period, followed by sows in mid- and early-gestation periods, respectively, and fecal P output 

from sows in the late-gestation period was less (P < 0.05) than from sows in the mid-gestation 

period. Absorbed P and the ATTD of P were greater (P < 0.05) in the late-gestation period than 

in early- or mid-gestation periods. Phosphorus retention (gram per day) increased (P < 0.05) 
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from the early-gestation period to the late-gestation period and P retention (percentage of P 

intake) was greater (P < 0.05) in late- and mid-gestation periods compared with the early-

gestation period.  

Digestibility of Ca and Calcium Balance by Sows Fed Ca Carbonate-Containing Diets 

Interactions between gestation period and phytase were not observed for sows fed the diet 

containing Ca carbonate (data not shown). Supplementation of microbial phytase did not affect 

the ATTD of DM, the ATTD of Ca, the STTD of Ca, or Ca retention (Table 6.5). However, 

supplementation of microbial phytase reduced (P < 0.001) daily basal endogenous loss of Ca 

(milligram per day). 

Feed intake was greater (P < 0.05) in the late-gestation period, followed by mid- and 

early-gestation periods, respectively, and fecal excretion from sows in the late-gestation period 

was greater (P < 0.05) compared with sows in the early-gestation period. Nevertheless, the 

ATTD of DM was not affected by gestation period. Calcium intake was greatest (P < 0.05) in the 

late-gestation period, followed by mid- and early-gestation periods, respectively, but fecal Ca 

output was greater (P < 0.05) in the mid-gestation period than in early- or late-gestation periods. 

Absorbed Ca was greater (P < 0.05) in sows during the late-gestation period compared with 

earlier gestation periods. The ATTD of Ca was least (P < 0.05) in the mid-gestation period, 

followed by early- and late-gestation periods, respectively, and the STTD of Ca for sows in the 

mid-gestation period was also lower (P < 0.05) than for sows in early- or late-gestation periods. 

Urine Ca output was greater (P < 0.05) in the early-gestation period compared with the later 

gestation periods and Ca retention (gram per day and percentage of Ca intake) was greater (P < 

0.05) in the late-gestation period than in earlier gestation periods. 

  



143 

 

Phosphorus Balance 

Interactions between gestation period and phytase were not observed for P balance by 

sows fed the diets containing calcium carbonate with the exception that urine P output was 

reduced from sows in late-gestation compared with early- and mid-gestation periods if no 

phytase was used, but that was not the case if phytase was included in the diet (interaction, P = 

0.005; Table 6.6). Supplementation of microbial phytase did not affect the ATTD of P or P 

retention by gestating sows. 

Phosphorus intake was greatest (P < 0.05) in the late-gestation period, followed by mid- 

and early-gestation periods, but fecal P output was greater (P < 0.05) in the mid-gestation period 

than in early- or late-gestation periods. Absorbed P was greater (P < 0.05) in the late-gestation 

period compared with earlier periods and the ATTD of P was least (P < 0.05) in the mid-

gestation period, followed by early- and late-gestation periods, respectively. Phosphorus 

retention was also greater (P < 0.05) in the late-gestation period than in the earlier gestation 

periods. 

 

DISCUSSION 

Concentrations of Ca and P in the corn, potato protein concentrate, Ca carbonate, and 

monosodium phosphate that were used in this experiment were in agreement with reported 

values (NRC, 2012; González-Vega et al., 2015a; Merriman and Stein, 2016). Feed intake and 

Ca and P intake by sows were greater in late-gestation than in the earlier periods because BW of 

sows increased from early- to mid- to late-gestation and feed intake was calculated based on the 

initial BW of sows at each period. This approach was used to maintain a constant feed intake 

relative to the metabolic BW of sows and thus avoid possible confounding effects of supplying 
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feed at different quantities relative to the maintenance requirement of sows. 

Effects of Phytase on Basal Endogenous Loss of Ca and ATTD of P 

The basal endogenous loss of Ca in sows during mid-gestation if no phytase was used 

(1,196 mg/kg of DMI) was close to the value (1,580 mg/kg of DMI) reported by Lee et al. 

(2018). However, the basal endogenous loss of Ca from growing pigs fed a corn-based Ca-free 

diet was between 329 (Merriman and Stein, 2016) and 550 mg/kg DMI (González-Vega et al., 

2015b; Merriman, 2016; Blavi et al., 2017), and the present result along with the data by Lee et 

al. (2018) confirm that gestating sows have much greater basal endogenous loss of Ca than 

growing pigs if measured as milligram per kilogram of DMI. 

The efficacy of phytase depends on the feed ingredients used in diets and the P-adequacy 

of the diets, because Ca and P digestibility in some ingredients, including dicalcium phosphate 

and monocalcium phosphate are not affected by phytase (González-Vega et al., 2015a). The 

observation that use of phytase decreases the basal endogenous loss of Ca from gestating sows 

indicates that phytate in corn may bind to endogenous Ca to form a Ca-phytate complex that is 

indigestible. However, the present data indicate that when phytase is added to the diet, there is 

less phytate to bind to Ca with a subsequent increased absorption and reduced excretion of 

endogenous Ca. The total endogenous loss of Ca from growing pigs was not affected by phytase 

if diets were based on canola meal (González-Vega et al., 2013). Because sows have greater 

endogenous loss than growing pigs, more endogenous Ca is available for binding to the phytate 

molecule in sows, which may be the reason phytase reduces the basal endogenous loss of Ca 

from sows, but not from growing pigs.    

The observation that values for ATTD of P in sows fed Ca-free diets were greater 

compared with values from sows fed diets containing corn and Ca carbonate illustrates that there 
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is an interaction between Ca and P with a reduced ATTD of P if Ca in diets increases as has been 

previously demonstrated in growing pigs (Stein et al., 2011). The fact that sows absorbed P even 

if there was no Ca in the diet also illustrates that there is no down-regulation of P-absorption if 

bone tissue cannot be synthesized due to a lack of Ca, which has also been reported for growing 

pigs (Stein et al., 2006). Absorbed P can be retained in the body only if both Ca and P are 

available at the same time (Crenshaw, 2001), which is the reason most of the absorbed P from 

sows fed the Ca-free diets was excreted in the urine. Likewise, the reason retention of P was 

greater if sows were fed diets containing Ca carbonate compared with sows fed Ca-free diets, 

despite a lower absorption of P, is that most absorbed P could be used for bone tissue synthesis if 

diets containing Ca carbonate were fed.   

Effects of Phytase on Digestibility and Retention of Ca and P 

Chelation of both endogenous and dietary Ca++ in the intestine of pigs, which is a result 

of the negative charge of phytate (Nelson and Kirby, 1987; Selle et al., 2009), is the reason 

phytase increases both Ca and P digestibility in feed ingredients and diets fed to growing pigs 

(Almeida et al., 2013; Rodríguez et al., 2013; González-Vega et al., 2015a). Supplementation 

with exogenous phytase of diets fed to sows in mid-gestation resulted in increased ATTD of Ca 

and P (Jongbloed et al., 2004), an increase in ATTD of P only (Nyachoti et al., 2006; Jongbloed 

et al., 2013; Jang et al., 2014), or no effect on ATTD of Ca or P (Kemme et al., 1997; Liesegang 

et al., 2005). In the case of late-gestation, phytase increased ATTD of P (Kemme et al., 1997; 

Jongbloed et al., 2004; Nyachoti et al., 2006) or ATTD of Ca and P (Hanczakowska et al., 2009; 

Jongbloed et al., 2013). In this experiment, phytase had limited effects on the ATTD and STTD 

of Ca and on the ATTD of P in the P-sufficient-corn-based diet. It is not clear why different 

responses to phytase fed to gestating sows have been observed, but it is possible that phytase 
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efficacy is reduced in P-sufficient diets (Rodehutscord, 2016) and because the ATTD of Ca and 

P is much lower than in growing pigs fed diets without phytase (Lee et al., 2018), there likely are 

factors other than formation of Ca-P-phytate complexes that limit absorption of Ca and P. 

Digestibility of Ca and P by growing pigs decreases as the concentration of phytate increases 

(Almaguer et al., 2014; Lee et al., 2018), but phytate levels did not affect the ATTD of Ca and P 

in sows in mid-gestation (Lee et al., 2018), which further demonstrates that differences between 

growing pigs and gestating sows exist. Thus, more research to elucidate factors that affect 

absorption of Ca and P in gestating sows is warranted.   

Effect of Gestation Period on Digestibility and Retention of Ca and P and Basal Endogenous 

Loss of Ca 

To our knowledge, no data for the STTD of Ca in calcium carbonate by sows in different 

periods of gestation have been published. However, the observation that sows in mid-gestation 

had reduced ATTD of Ca and P compared with sows in late-gestation is in agreement with 

previous data (Kemme et al., 1997; Jongbloed et al., 2004; Liesegang et al., 2005; Nyachoti et 

al., 2006; Jongbloed et al., 2013). Providing Ca and P above requirements may reduce the 

digestibility and retention of Ca and P in gestating sows (Kemme et al., 1997; Nyachoti et al., 

2006; Bikker and Blok, 2017). In this experiment, the same diets were fed to sows in all periods 

of gestation. The analyzed Ca and P were approximately 0.88 and 0.55%, respectively, which is 

close to the requirements in late-gestation, but greater than the requirement estimates for sows in 

early- or mid-gestation (NRC, 2012). The observation that retained Ca and P, expressed in g/d, 

were not different between early- and mid-gestation indicates that the requirements for Ca and P 

are similar between these periods. However, the fact that ATTD of Ca and P increased in late-

gestation indicates that sows in late-gestation require more Ca and P than sows in earlier periods. 
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Indeed, very little Ca and P is needed for fetus development in early- to mid-gestation compared 

with late-gestation (Bikker and Blok, 2017). The data for Ca and P retention that were calculated 

in this experiment also indicate that more Ca and P are needed in late-gestation compared with 

previous periods. It is possible that differences in plasma estrogen during gestation influence 

1,25-dihydroxyvitamin D3 metabolism, which affects the digestibility of Ca and P (Heaney, 

1990; Ross et al., 2011; Harmon et al., 2016). Estrogen increases during late-gestation 

(Kensinger et al., 1982), which may contribute to the increased ATTD of Ca and P by sows in 

late-gestation compared with early- or mid-gestation.  

 

CONCLUSION  

Apparent total tract digestibility, basal endogenous loss, STTD, and retention of Ca and P 

in gestating sows are influenced by the trimester of gestation. To accurately predict Ca and P 

absorption in gestating sows. Therefore, it may be necessary to assume different digestibility 

values for Ca in calcium carbonate and P in corn and monosodium phosphate in the late-

gestation period compared with early- or mid-gestation periods. Use of microbial phytase 

decreases the basal endogenous loss of Ca, but the response to microbial phytase on STTD of Ca 

and ATTD of P in Ca and P-adequate-corn-based diets fed to gestating sows is less predictable. 

This may be due to an over-supply of both Ca and P by phytase in nutrient adequate diets. 

Therefore, there is a need to further clarify the Ca and P requirements of sows during the 

different trimesters of gestation. 
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TABLES 

Table 6.1. Analyzed nutrient composition of feed ingredients (as-is basis) 

Item Corn Potato protein 

concentrate 

Calcium  

carbonate 

Dry matter, % 89.77 93.57 99.95 

Crude protein, % 6.95 79.87 - 

Ash, % 1.42 0.65 93.38 

Ca, % < 0.01 0.02 39.63 

Total P, % 0.25 0.13 0.01 

Phytate1, % 0.73 0.28 - 

Phytate-bound P, % 0.21 0.08 - 

Phytate-bound P, % of total P 82.00 62.99 - 

Non-phytate P2, % 0.05 0.05 - 

1Phytate was calculated by dividing the analyzed phytate-bound P by 0.282 (Tran and 

Sauvant, 2004).  

2Non-phytate P was calculated as the difference between total P and phytate-bound P. 
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Table 6.2. Ingredient composition of diets (as-is basis) 

Ingredient, % Calcium carbonate1 Ca-free1 Conventional diet2 

 Corn 86.19 88.34 74.58 

 Soybean meal - - 14.00 

 Sugar beet pulp - - 7.00 

 Potato protein concentrate 8.50 8.50 - 

 Calcium carbonate 2.10 - 1.30 

 Soybean oil 1.00 1.00 1.20 

 L-Lys·HCl - - 0.12 

 L-Thr - - 0.05 

 Monocalcium phosphate - - 1.20 

 Monosodium phosphate 1.15 1.10 - 

 Potassium carbonate 0.40 0.40 - 

 Magnesium oxide 0.10 0.10 - 

 Sodium chloride 0.40 0.40 0.40 

 Vitamin-mineral premix3 0.15 0.15 0.15 

 Phytase premix4 0.01 0.01 - 

1Diets were formulated without or with 500 units of microbial phytase (Quantum Blue®, 

AB Vista, Marlborough, UK). 

2Conventional diet was fed to gestating sows before and between collection periods and 

the conventional diet did not contain any exogenous phytase. 

3The vitamin-mineral premix provided the following quantities of vitamins and micro 

minerals per kg of complete diet: vitamin A as retinyl acetate, 11,150 IU; vitamin D3 as  
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Table 6.2. (Cont.) 

cholecalciferol, 2,210 IU; vitamin E as selenium yeast, 66 IU; vitamin K as menadione 

nicotinamide bisulfate, 1.42 mg; thiamin as thiamine mononitrate, 1.10 mg; riboflavin, 6.59 mg; 

pyridoxine as pyridoxine hydrochloride, 1.00 mg; vitamin B12, 0.03 mg; D-pantothenic acid as D-

calcium pantothenate, 23.6 mg; niacin, 44.1 mg; folic acid, 1.59 mg; biotin, 0.44 mg; Cu, 20 mg 

as copper chloride; Fe, 125 mg as iron sulfate; I, 1.26mg as ethylenediamine dihydriodide; Mn, 

60.2 mg as manganese hydroxychloride; Se, 0.30mg as sodium selenite and selenium yeast; and 

Zn, 125.1mg as zinc hydroxychloride. 

 4The phytase premix contained 5,000 units of phytase per g; corn starch was used at the 

expense of phytase premix in diets without microbial phytase. 
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Table 6.3. Analyzed nutrient concentrations in experimental diets (as-fed basis) 

Item, % Calcium carbonate  Ca-free  

Conventional 

diet1 Phytase units/kg 0 500  0 500  

Metabolizable energy2 3,318 3,318  3,391 3,391  3,299 

Dry matter 87.73 88.05  87.53 87.34  87.39 

Crude protein 12.7 12.6  13.0 13.1  12.5 

Ash 4.58 5.27  3.34 3.13  5.42 

Neutral detergent fiber 6.39 5.65  6.42 7.13  9.96 

Acid detergent fiber 1.33 1.25  1.41 2.16  4.44 

Acid hydrolyzed ether extract 2.35 2.36  2.68 2.45  2.06 

Ca 0.87 0.89  0.02 0.01  0.86 

Total P 0.55 0.54  0.52 0.53  0.49 

Phytase activity, phytase units/kg < 50 687  < 50 587  < 50 

Phytate3, % 0.65 0.65  0.67 0.67  0.78 

Phytate-bound P4, % 0.18 0.18  0.19 0.19  0.22 

Phytate-bound P, % of total P 34.55 35.19  36.54 35.85  42.65 

Non-phytate P5, % 0.36 0.35  0.33 0.34  0.28 

1The conventional gestation diet was fed to gestating sows before and between collection 

periods and this diet did not contain any exogenous phytase. 

2Values for metabolizable energy were calculated rather than analyzed (NRC, 2012). 

3Phytate was calculated by dividing the analyzed phytate-bound P by 0.282 (Tran and 

Sauvant, 2004). 

4Phytate values were calculated from analyzed phytate in the ingredients. 

5Non-phytate P was calculated as the difference between total P and phytate-bound P.  
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Table 6.4. Basal endogenous loss (BEL) of Ca and balance of P by sows fed Ca-free diets without or with microbial phytase fed to 

sows in early-, mid-, and late-gestation periods 

Item, % Phytase units/kg 
 

SEM P-value 

 
Period of gestation 

 

SEM P-value  
0 500 

  
Early Mid Late  

Number of observations, n 24 23 
 

- - 
 

15 16 16 
 

- - 

Feed intake1, kg/d 2.65 2.64 
 

0.20 0.926 
 

2.43c 2.63b 2.86a 
 

0.19 < 0.001 

Dry fecal excretion1, kg/d 0.27 0.26 
 

0.02 0.472 
 

0.26 0.26 0.26 
 

0.02 0.997 

Urinary excretion1, kg/d 7.32 6.97 
 

1.31 0.856 
 

7.54 6.19 7.70 
 

1.28 0.552 

ATTD of dry matter2, % 89.13 89.34  0.33 0.641  88.49b 89.21ab 90.01a  0.42 0.047 

Calcium             

Fecal Ca output1, g/d 2.64 1.95 
 

0.35 0.003 
 

2.66a 2.39a 1.83b 
 

0.35 < 0.001 

BEL of Ca2, mg/kg DMI 1,141 858 
 

85 0.002 
 

1,225a 1,036b 737c 
 

87 < 0.001 

Urine Ca output1, g/d 0.13 0.22 
 

0.05 0.210 
 

0.23a 0.20a 0.09b 
 

0.04 0.001 

Ca retention1, g/d -2.52 -1.94 
 

0.37 0.012 
 

-2.68b -2.35b -1.66a 
 

0.37 < 0.001 

Phosphorus             

P intake1, g/d 13.76 13.71 
 

1.03 0.922 
 

12.66c 13.66b 14.89a 
 

1.01 < 0.001 
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Table 6.4. (Cont.)             

Fecal P output1, g/d 6.50 6.16 
 

0.68 0.088 
 

6.38ab 6.81a 5.80b 
 

0.71 0.040 

Absorbed P1, g/d 7.29 7.63 
 

0.38 0.395 
 

6.36b 6.89b 9.13a 
 

0.40 < 0.001 

ATTD of P, % 52.37 54.59 
 

1.62 0.099 
 

50.03b 49.87b 60.54a 
 

2.05 < 0.001 

Urine P output1, g/d 6.32 6.56 
 

0.76 0.589 
 

6.85 5.72 6.75 
 

0.79 0.086 

P retention1, g/d 0.91 0.97 
 

0.46 0.852 
 

-0.58b 1.10ab 2.31a 
 

0.60 0.001 

P retention, % of intake 6.46 6.93 
 

3.71 0.829 
 

-3.86b 7.95a 15.99a 
 

4.49 0.001 

1All values for intake, output, or retention are the average values for the 4-d collection period.  

 2ATTD = apparent total tract digestibility; BEL = basal endogenous loss; DMI = dry matter intake. 
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Table 6.5. Apparent total tract digestibility (ATTD) and standardized total tract digestibility (STTD) of Ca and retention of Ca in diets 

containing calcium carbonate fed to sows in early-, mid-, and late-gestation periods 

Item, % Phytase units/kg 
 

SEM P-value 

 
Period of gestation 

 

SEM P-value 
  0 500 

  
Early Mid Late 

 

Number of observations, n 18 24 
 

- - 
 

14 14 14 
 

- - 

Feed intake1, kg/d 2.73 2.65  0.19 0.242  2.46c 2.69b 2.92a  0.19 < 0.001 

Dry fecal excretion1, kg/d 0.27 0.25  0.02 0.312  0.24b 0.27ab 0.28a  0.02 0.039 

Urinary excretion1, kg/d 8.73 5.74  1.50 0.127  9.40 6.33 5.98  1.47 0.058 

ATTD of dry matter, % 88.94 89.38  0.53 0.571  89.18 88.98 89.33  0.48 0.794 

Ca intake1, g/d 24.12 23.37  1.65 0.241  21.74c 23.70b 25.79a  1.63 < 0.001 

Fecal Ca output1, g/d 16.91 16.20  1.88 0.480  15.19b 19.62a 14.86b  1.94 0.001 

Absorbed Ca1, g/d 7.16 7.08  0.65 0.933  6.47b 4.01b 10.87a  0.78 < 0.001 

ATTD of Ca, % 28.70 29.84  3.65 0.795  29.44b 17.35c 41.02a  3.80 < 0.001 

BEL of Ca2, mg/d 2,723 1,990  173 < 0.001  2,719a 2,463b 1,888c  171 < 0.001 

STTD of Ca3, % 40.08 38.57  3.65 0.733  41.83a 27.72b 48.43a  3.80 < 0.001 

Urine Ca output1, g/d 0.38 0.33  0.09 0.444  0.55a 0.29b 0.22b  0.09 < 0.001 
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Table 6.5. (Cont.)             

Ca retention1, g/d 6.74 6.71  0.66 0.982  5.89b 3.68b 10.60a  0.78 < 0.001 

Ca retention, % of intake 27.42 28.72  3.81 0.755  27.33b 16.43c 40.46a  4.00 < 0.001 

a-cWithin a row, means without a common superscript differ (P < 0.05). 

1All values for intake, output, or retention are the average values for the 4-d collection period.  

2BEL = basal endogenous loss; the daily BEL of Ca (mg/d) was calculated by multiplying the BEL of Ca (mg/kg dry matter 

intake) by the daily dry matter intake (kg/d) of each experimental diet. 

3The STTD of Ca in each diet within each period of gestation was calculated using the basal endogenous Ca loss that was specific for 

each period; basal endogenous losses of Ca from sows fed the Ca-free diet without microbial phytase = 1,348, 1,196, and 877 mg/kg 

dry matter intake for early-, mid-, and late-gestation periods, respectively; basal endogenous losses of Ca from sows fed the Ca-free 

diet with microbial phytase = 1,130, 876, and 596 mg/kg dry matter intake for early-, mid-, and late-gestation periods, respectively. 
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Table 6.6. Apparent total tract digestibility (ATTD) of P and retention of P in diets containing Ca carbonate fed to sows in early-, 

mid-, and late-gestation periods  

Item, % Phytase units/kg   

SEM P-value 

  Period of gestation   

SEM P-value 

  0 500     Early Mid Late   

Number of observations, n 18 24 
 

- - 
 

14 14 14 
 

- - 

P intake1, g/d 14.87 14.41 
 

1.02 0.240 
 

13.40c 14.61b 15.90a 
 

1.01 < 0.001 

Fecal P output1, g/d 11.26 10.21 
 

1.27 0.138 
 

9.88b 12.52a 9.81b 
 

1.30 0.001 

Absorbed P1, g/d 3.54 4.06 
 

0.49 0.463 
 

3.42b 1.99b 5.99a 
 

0.51 < 0.001 

ATTD of P, % 22.65 27.36 
 

3.41 0.349 
 

25.06b 13.66c 36.29a 
 

3.35 < 0.001 

Urine P output without phytase1,2, g/d - -  - - 
 

1.43a 1.12a 0.39b  0.19 < 0.001 

Urine P output with phytase1,2, g/d - -  - -  1.28a 1.03a 0.91ab  0.17 0.037 

P retention1, g/d 2.54 2.99 
 

0.51 0.543 
 

2.08b 0.92b 5.30a 
 

0.53 < 0.001 

P retention, % of intake 15.94 20.08 
 

3.47 0.415 
 

15.41b 6.54b 32.08a 
 

3.40 < 0.001 

a-cWithin a row, means without a common superscript differ (P < 0.05). 

1All values for intake, output, or retention are the average values for the 4-d collection period.  

2There was an interaction between supplemental phytase and gestation period (P = 0.005). Therefore, values for urine P output 

were partitioned using the SLICE option of SAS (SAS Inst. Inc., Cary, NC). Each least squares mean represents 6 observations for  

sows fed the diet without phytase; each least squares mean represents 8 observations for sows fed the diet with phytase.
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CHAPTER 7: INCREASING CALCIUM CONCENTRATION IN DIETS FOR 

GESTATING SOWS DECREASES DIGESTIBILITY OF PHOSPHORUS, BUT 

INCREASES THE CONCENTRATION OF SOME BLOOD BIOMARKERS FOR BONE 

RESORPTION 

 

ABSTRACT 

The objective of this experiment was to test the hypothesis that the concentration of Ca in 

diets fed to late gestating sows affect the apparent total tract digestibility (ATTD) and retention 

of Ca and P, and serum concentrations of Ca and P, hormones, and blood biomarkers for bone 

formation and resorption. Thirty-six sows (average parity = 2.8) were housed individually in 

metabolism crates from d 91 to d 105 of gestation and fed one of 4 experimental diets containing 

25, 50, 75, or 100% of the requirement for Ca. All diets were formulated to meet the requirement 

for P. The initial 5 d of each period were considered the adaptation period, which was followed 

by 4 d of quantitative collection of feces and urine. At the end of the collection period, a blood 

sample was collected from all sows. Results indicated that feed intake, fecal and urine excretion, 

and the ATTD of dry matter were not affected by dietary Ca, but ATTD of Ca increased 

(quadratic, P < 0.05) as Ca in diets increased. Urine Ca output was not affected by dietary Ca, 

but Ca retention increased (quadratic, P < 0.05) as Ca intake increased. Fecal P output increased 

(linear, P < 0.001) as dietary Ca increased, which resulted in linear decreases (P < 0.001) in the 

ATTD of P. Urine P output also decreased (linear, P < 0.001) as dietary Ca increased, but P 

retention increased (linear, P < 0.05). The slope of the regression equation that regressed the 

apparent total tract digestible Ca against dietary Ca intake was 0.33, which indicates that true 

total tract digestibility of Ca in calcium carbonate was 33%. Serum concentrations of Ca and P 
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and estrogen, calcitonin, and parathyroid hormone were not affected by Ca concentrations in 

diets. Serum concentration of carboxyterminal cross-linked telopeptide of type I collagen (CTX-

I) decreased (linear, P < 0.05) as dietary Ca increased and serum bone-specific alkaline 

phosphatase tended to decrease (linear, P < 0.10) as Ca in diets increased. The concentration of 

osteocalcin (OC) in serum was not affected by dietary Ca, but the ratio between OC and CTX-I 

tended to increase (P < 0.10) as dietary Ca increased, which indicated that there was more bone 

formation than resorption in sows as dietary Ca increased. In conclusion, P digestibility in late 

gestating sows decreased, but retention of P increased as dietary Ca increased from inadequate to 

adequate levels and blood biomarkers for bone resorption changed as Ca and P retention 

increased. 

Key words: biomarkers, calcium, digestibility, phosphorus, retention, sows 

 

INTRODUCTION 

Values for apparent total tract digestibility (ATTD) of P in sows fed Ca-free diets are 

greater than values from sows fed diets containing corn and calcium carbonate (Lee et al., 

2019b), and increasing dietary Ca linearly reduces P digestibility in growing pigs (Stein et al., 

2011). These observations indicate that there is an interaction between dietary Ca and P, which is 

likely a result of precipitation of Ca and P in the intestinal tract of pigs.  

Relatively more Ca and P are needed for fetus development in late gestation compared 

with earlier gestation periods (Bikker and Blok, 2017; Lee et al., 2019b), but an assessment of 

the exact requirements for Ca and P in sows is challenging and expensive. However, biomarkers 

for bone turnover including carboxyterminal cross-linked telopeptide of type I collagen (CTX-I), 

osteocalcin (OC), and bone-specific alkaline phosphatase (BAP) have been used in humans, beef 
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breeder cows, and growing pigs as indicators of Ca and P adequacy in diets (Larsen et al., 2000; 

Vasikaran et al., 2011; Anderson et al., 2017; Sørensen et al., 2018). Therefore, changes in 

dietary Ca and P, retained Ca and P in the body, and bone turnover may be estimated from serum 

concentrations of biomarkers, but this relationship has not been demonstrated in sows, and it is 

not known if blood biomarkers can be used to estimate Ca and P status of gestating sows.  

Blood Ca levels are regulated by several hormones including parathyroid hormone 

(PTH) and calcitonin and, occasionally, estrogen (Heaney, 1990; Crenshaw, 2001). It is also 

possible that hormone levels are affected by dietary Ca and P, but pig data to demonstrate this 

are lacking. Therefore, the objective of this experiment was to test the hypothesis that the 

concentration of Ca in diets fed to late gestating sows affect ATTD and retention of Ca and P, 

blood Ca and P concentrations, serum hormone levels, and concentrations of serum biomarkers. 

 

MATERIALS AND METHODS 

The Institutional Animal Care and Use Committee at the University of Illinois reviewed 

and approved the protocol for the experiment before the animal work was initiated.  

Animals, Housing, Diets, and Sample Collection 

Thirty-six gestating Camborough sows (PIC, Hendersonville, TN; average parity = 2.8) 

were allotted to 3 blocks of 12 sows using a randomized complete block design. Four diets were 

fed to the 12 sows in each block with 3 sows per diet; thus, there was a total of 9 replicate sows 

for each treatment. Sows were housed individually in metabolism crates from d 91 to d 105 of 

gestation. Metabolism crates were equipped with a feeder, a nipple drinker, and fully slatted tri-

bar floors. A screen floor and a urine pan were installed below the tri-bar floors to allow for 

collection of feces and urine, respectively. 
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Experimental diets were based on corn and soybean meal (Table 7.1). All diets were 

formulated to contain P at the requirement for total P (i.e., 0.55%; NRC, 2012), but Ca was 

included at 25, 50, 75, or 100% of the requirement (Table 7.2). Thus, the 4 experimental diets 

were formulated to contain 0.18, 0.36, 0.54, or 0.72% Ca and these concentrations were achieved 

by adding increasing concentrations of calcium carbonate to the diets at the expense of 

cornstarch. All vitamins and minerals except Ca were included in all diets to meet requirements 

(NRC, 2012).  

Daily feed allotments were provided in 2 equal meals that were fed at 0800 and 1600 h 

throughout the experiment. The daily feed allowance was 1.5 times the maintenance energy 

requirement for gestating sows based on the body weight of sows when they were moved to the 

metabolism crates (i.e., 100 kcal metabolizable energy/kg body weight0.75; NRC, 2012). Water 

was available at all times.  

The initial 5 d of each period in the metabolism crates were considered the adaptation 

period to the diets and this period was followed by 4 d of fecal collection using the marker to 

marker procedure (Adeola, 2001). Fecal collection was initiated when the first marker (i.e., 

indigo carmine) appeared in the feces and ceased when the second marker (i.e., chromic oxide) 

appeared (Adeola, 2001). Fecal samples were stored at ‒20 °C as soon as collected. Urine was 

collected in buckets placed under the urine pans with 50 mL of 3N HCl from d 6 in the morning 

until d 10 in the morning. Buckets were emptied daily, the weight of the collected urine was 

recorded, and 10% of the collected urine was stored at ‒20 °C until subsampling. Following fecal 

and urine collections, sows were fasted for 24 h (Vasikaran et al., 2011) and a blood sample was 

collected from the vena cava. Blood samples were immediately centrifuged and serum samples 

were collected and stored at ‒20 ºC. 
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At the conclusion of the experiment, urine samples were thawed and mixed within animal 

and collection period and subsamples were collected. Urine subsamples were filtered through a 

4- to 8-µm P4 filter (Fisher Scientific International, Inc., Hampton, NH). Fecal samples were 

dried at 65 °C in a forced-air oven and finely ground through a 1-mm screen before analysis 

using a Wiley mill (Model 4; Thomas Scientific, Swedesboro, NJ). 

Chemical Analyses 

Calcium and P in ingredients, diets, feces, urine, and serum were analyzed by inductively 

coupled plasma spectroscopy (AOAC Int., 2007; method 985.01 A, B, and C) after wet ash 

sample preparation [AOAC Int., 2007; method 975.03 B(b)]. Ingredient, diet, and fecal samples 

were analyzed for dry matter (DM; AOAC Int., 2007; method 930.15) and ash was analyzed in 

all ingredient and diet samples (AOAC Int., 2007; method 942.05). Crude protein in corn, 

soybean meal, sugar beet pulp and all diets was calculated as N × 6.25 and N was analyzed by 

combustion (AOAC Int., 2007; method 990.03) using a LECO FP628 apparatus (LECO Corp., 

Saint Joseph, MI). Insoluble dietary fiber and soluble dietary fiber in diets were analyzed 

according to method 991.43 (AOAC Int., 2007) using the AnkomTDF Dietary Fiber Analyzer 

(Ankom Technology, Macedon, NY). Acid hydrolyzed ether extract in corn, soybean meal, and 

sugar beet pulp was analyzed by acid hydrolysis using 3N HCl (AnkomHCl, Ankom 

Technology, Macedon, NY) followed by fat extraction using petroleum ether (AnkomXT15, 

Ankom Technology, Macedon, NY). The GE in corn, soybean meal, and sugar beet pulp was 

measured using an isoperibol bomb calorimeter (Model 6400, Parr Instruments, Moline, IL). 

Serum samples were analyzed for CTX-I using a Pig Cross-Linked C-Telopeptide of 

Type I Collagen ELISA Kit (Abbexa Ltd., Cambridge, UK). Concentrations of OC in serum 

were analyzed using an N-MID® Osteocalcin Enzyme-Linked Immunosorbent Assay (ELISA) 
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Kit (Immunodiagnostic Systems Ltd, The Boldons, UK), and BAP was analyzed using an 

Ostase® BAP Enzyme Immunoassay Kit (Immunodiagnostic Systems Ltd, The Boldons, UK). 

Serum samples were also analyzed for calcitonin (Porcine Calcitonin ELISA Kit; MyBioSource, 

San Diego, CA), PTH (Porcine PTH ELISA Kit; MyBioSource, San Diego, CA), and estrogen as 

estradiol (Porcine Estrogen ELISA Kit; MyBioSource, San Diego, CA). 

Calculations 

The ATTD of DM, Ca, and P in experimental diets was calculated as outlined by 

Almeida and Stein (2010) and retention of Ca and P (%) in experimental diets was calculated 

according to Petersen and Stein (2006). Apparent total tract digested Ca (gram per day) was 

regressed against dietary Ca intake (gram per day) using Eq. 7.1, which was adopted from Fan et 

al. (2001): 

Apparent total tract digested Ca = - B + (A  dietary Ca intake) ,  [7.1] 

where A is the slope of the regression and represents the coefficient for true total tract 

digestibility (TTTD); and B is the intercept of the regression and represents the endogenous loss 

of Ca (gram per day).  

Statistical Analysis  

Data were analyzed using the PROC MIXED (SAS Inst. Inc., Cary, NC) and 

homogeneity of the variance among treatments and normality was confirmed using the PROC 

UNIVARIATE of SAS. Outliers were identified and eliminated if values deviated from the 1st or 

3rd quartiles by more than 3 times the interquartile range (Tukey, 1977). Sow was the 

experimental unit for all analyses. The statistical model included diet as fixed effect and parity, 

block, and replicate within block as random effects and LSmeans of each treatment were 

calculated. Polynomial contrasts were used to test for linear and quadratic effects of increasing 
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dietary Ca. The PROC REG of SAS was used to estimate the Y-intercept and the slope to 

determine the endogenous losses of Ca and the TTTD of Ca, respectively. Significance and 

tendency were considered at P < 0.05 and 0.05 ≤ P < 0.10, respectively. 

 

RESULTS  

Calcium and P balance 

Feed intake, fecal excretion, urine excretion, and the ATTD of DM by sows were not 

affected by the level of Ca in the diets (Table 7.3), but Ca intake, fecal Ca output, and absorbed 

Ca increased (linear, P < 0.001) with increasing Ca in diets. Values for the ATTD of Ca 

increased (quadratic, P < 0.05) as Ca in diets increased. Urine Ca output and Ca retention, 

expressed as percent of absorbed, were not affected by dietary Ca, but Ca retention expressed as 

gram per day increased linearly (P < 0.001), and Ca retention, expressed as percent of intake, 

increased quadratically (P < 0.05). 

Phosphorus intake was not affected by dietary Ca because all diets had the same 

concentration of P. Fecal P output increased (linear, P < 0.001) as dietary Ca increased, which 

resulted in linear decreases (P < 0.001) in ATTD of P and absorbed P (g/d). Urine P output also 

decreased (linear, P < 0.001) as dietary Ca increased, whereas P retention expressed as gram per 

day and as percent of intake and percent of absorbed increased as dietary Ca increased (linear, P 

< 0.05). The slope of the regression line that was developed by regressing apparent total tract 

digestible Ca against dietary Ca intake was 0.33, which indicates that the TTTD of Ca in calcium 

carbonate was 33% (Table 7.4). The intercept of the regression line and the vertical axis was at 

0.79 indicating that total endogenous loss of Ca was 0.79 g per kg DM intake. 
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Calcium and P Levels, Hormones, and Biomarkers in Blood Samples 

Serum concentrations of Ca and P and estrogen, calcitonin, and PTH in serum samples 

were not affected by Ca concentration in diets (Table 7.5). However, the  concentration of CTX-I 

decreased (linear, P < 0.05) as Ca concentration increased in the diets, indicating that reduced 

quantities of Ca were mobilized from the bones as dietary Ca increased. In contrast, serum BAP 

tended to decrease (linear, P < 0.10) as Ca in diets increased. The concentration of OC in serum 

was not affected by dietary Ca, but the ratio of OC to CTX-I tended to increase (P < 0.10) as 

dietary Ca increased, which indicates that bone formation increased more than bone resorption 

increased. 

 

DISCUSSION 

Calcium and P balance 

The requirement for Ca in late gestation sows is 0.72% (NRC, 2012). Concentrations of 

analyzed Ca in the 4 diets were 0.18, 0.36, 0.59, and 0.71%, which is equivalent to 25, 50, 82, 

and 99% of the requirement, respectively. Thus analyzed Ca in the 4 diets was in agreement with 

formulated concentrations. The observations that urine Ca output was not affected by dietary Ca 

intake, whereas Ca retention increased as dietary Ca increased, indicate that sows retained 

absorbed Ca with the same efficiency regardless of dietary Ca intake. This indicates that even at 

the greatest level of Ca intake, sows retained almost all absorbed Ca. A similar observation was 

made in growing pigs that were fed diets with increasing dietary concentrations of Ca (González-

Vega et al., 2016a).  

The requirement for P is 0.55% (NRC, 2012) and all diets were formulated to meet the 

requirement. The analyzed P in all diets was 0.02 to 0.06 percentage units greater than 
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formulated indicating that all diets met the requirement for P as was intended. The reason for the 

slightly greater analyzed concentrations than formulated was that corn and soybean meal 

contained slightly more P than expected. Values for the ATTD of Ca and P in the diets were in 

agreement with previous values for gestating sows (Nyachoti et al., 2006; Jang et al., 2014; Lee 

et al., 2019b). The quadratic increase in the ATTD of Ca that was observed as dietary Ca 

increased is probably a result of a greater proportion of endogenous Ca in the feces of sows fed 

diets with a low concentration of Ca compared with sows fed diets with greater Ca (González-

Vega et al., 2013). The negative values for ATTD of Ca and retention of Ca as percent of intake 

for sows fed the diet with the least concentration of Ca demonstrate that these sows had 

endogenous losses of Ca that were greater than the daily Ca intake. 

The observation that the ATTD of P was reduced by increasing dietary Ca clearly 

demonstrates that P absorption is reduced by increasing Ca from calcium carbonate in the diets. 

This is likely due to chelation of phytate from corn, soybean meal, and sugar beet pulp with Ca+2 

ions, which results in undigestible Ca-P complexes (Stein et al., 2011). It is also possible that 

dietary P binds directly to Ca ions in the intestinal tract of pigs, which results in precipitation 

and, therefore, reduction in digestibility (Walk et al., 2012). However, the observations that urine 

excretion of P decreased and retention of P increased as dietary Ca increased indicates that P was 

in excess in the low Ca diets because there was not enough Ca to support maximum bone tissue 

synthesis. However, as dietary Ca increased, more bone was synthesized, which required more P 

and less P was, therefore, excreted. These observations indicate that Ca was the limiting nutrient 

for synthesizing bone because Ca and P are needed at the same time in the body to synthesize 

bone tissue. This observation is in agreement with data demonstrating that bone mineralization in 

growing pigs increased as dietary Ca increased with a constant concentration of P (González-
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Vega et al., 2016a; Merriman et al., 2017; Lagos et al., 2019). However, regardless of dietary 

treatment, values for Ca and P retention that were calculated in this experiment were less than 

those observed in a previous experiment for sows in late gestation (Lee et al., 2019b). Thus, it is 

possible that even though the diet with the greatest concentration of Ca was formulated to meet 

the requirement for Ca, sows fed this diet were fed below the concentration of Ca that is required 

to maximize Ca retention. 

The TTTD of Ca in calcium carbonate was close to the standardized total tract 

digestibility of Ca in calcium carbonate fed to late gestating sows (Lee et al., 2019b). The 

standardized total tract digestibility and TTTD of Ca in calcium carbonate by growing pigs was 

between 69 and 76% (González-Vega et al., 2015; Merriman and Stein, 2016; Zhang and 

Adeola, 2017; Lee et al., 2019a). The observation that the TTTD of Ca in calcium carbonate was 

33% indicates that sows have much less digestibility of Ca compared with growing pigs, which 

concurs with previous data (Lee et al., 2018a; 2018b). The calculated ATTD of P in diets 

containing corn, soybean meal, and monosodium phosphate is expected to be approximately 60% 

if the diets are fed to growing pigs (NRC, 2012). However, the observation that the ATTD of P 

in the 4 diets fed to sows was less than 40% further confirms that sows have much lower 

digestibility of Ca and P than growing pigs. It is not clear why the digestibility of Ca and P in 

gestating sows is so much lower than in growing pigs. In the diet with the least amount of Ca, 

sows were fed only 25% of the requirement, which theoretically should have upregulated the 

transcellular absorption of Ca resulting in a greater digestibility of Ca. However, the fact that this 

did not happen indicates that sows are not able to regulate the intestinal absorption of Ca, even if 

Ca is fed well below the requirement. This observation is in agreement with data from growing 

pigs (Stein et al., 2011) and intestinal absorption of P also appears not to be upregulated if the 
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provision of P is below the requirement (Stein et al., 2008). 

As demonstrated in this experiment, the DM digestibility was in agreement with what is 

observed in growing pigs and AA digestibility in gestating sows is also close to values observed 

in growing pigs (Stein et al., 2001). It therefore appears that the low digestibility of Ca and P is 

specific to these nutrients and not something that is general for all nutrients fed to gestating 

sows. The digestibility of Ca and P in lactating sows is closer to values obtained in growing pigs 

compared with gestating sows (Kemme et al., 1997; Jongbloed et al., 2004; Nyachoti et al., 

2006). It therefore seems that the very low digestibility of Ca and P that was observed in this 

experiment is specific to gestating sows. More research is needed to elucidate the reasons for 

these low digestibility values in gestating sows. 

The y-intercept of the regression line indicated that the endogenous loss of Ca was 2.12 

g/d and 0.79 g/kg DM intake if corrected for the average DM intake of sows. The total 

endogenous loss of Ca was in agreement with the value for the basal endogenous loss of Ca by 

sows in late gestation that was measured in a previous experiment (Lee et al., 2019b). However, 

the values obtained from sows were much greater compared with the endogenous loss of Ca in 

growing pigs (González-Vega et al., 2013; Zhang and Adeola, 2017; Lee et al., 2019a). The 

reason for this observation may be that gestating sows are fed only 1.5 times the energy 

requirement for maintenance, whereas growing pigs are usually fed 3.0 to 3.4 times the energy 

requirement for maintenance. The endogenous losses of AA measured as g per kg DM intake 

increases as feed intake is reduced (Stein et al., 1999; Moter and Stein, 2004), but it is unlikely 

that is the case for Ca because the level of feed intake does not affect ATTD of Ca and P in 

gestating sows (Lee et al., 2018a)  
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Calcium and P Levels, Hormones, and Biomarkers in Blood Samples 

Concentrations of Ca and P in serum were in agreement with expected values (Lauridsen 

et al., 2010; Weber et al., 2014). These results indicate that dietary Ca levels do not affect serum 

Ca or P in sows, which is in agreement with previous data (Larsen et al., 2000; González-Vega et 

al., 2016b). Blood concentrations of Ca are regulated by PTH and calcitonin (Crenshaw, 2001). 

If blood Ca is low, PTH is released from the parathyroid glands, which results in increased Ca 

absorption, efflux of Ca from bones, and reabsorption of Ca in the kidneys to increase blood Ca 

concentration (Crenshaw, 2001; Molina, 2013; Blaine et al., 2015). However, calcitonin is 

released when blood Ca is high, which results in a decrease in blood Ca concentration because of 

storage of more Ca in bone and reduced reabsorption of Ca from the kidney (Crenshaw, 2001; 

Molina, 2013). Estrogen concentration in serum is related to Ca metabolism in the body 

(Heaney, 1990; Ross et al., 2011; Harmon et al., 2016), and estrogen in serum increases during 

late gestation and during the post-partum period to support development of mammary glands 

(Kensinger et al., 1982). Therefore, it was expected that estrogen, PTH, and calcitonin 

concentration in serum would be affected by dietary Ca, but that was not the case. However, it is 

possible that this is a result of sows being fasted for 24 h before bleeding. Sows were fasted 

because some bone biomarkers may be affected by food intake (Vasikaran et al., 2011).  

Several biomarkers to predict bone turnover have been used in clinical practice for 

humans (Seibel, 2005; Vasikaran et al., 2011; Smith and Samadfam, 2017) and in some pig 

experiments (Weber et al., 2014; Sørensen et al., 2018). Most markers are derivatives or 

byproducts of bone turnover (Weber et al., 2014; Sørensen et al., 2018). The CTX-I is a collagen 

peptide derived from the bone matrix, which is released in greater quantities as bone break down 

increases; OC is synthesized by osteoblasts when new bone tissues are formed and BAP is an 
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enzyme that is involved in calcification of bone tissues by using blood P as a building block for 

bone tissue synthesis (Vasikaran et al., 2011). When dietary Ca is low, bone tissue breakdown is 

increased, which results in an increase in serum concentrations of collagen fragments including 

CTX-I that were parts of the bone matrix as was demonstrated in this experiment. In contrast, 

when there is sufficient Ca, it is more likely that osteoblasts are activated to increase bone tissue 

formation, which results in increases in OC and BAP levels. However, in this experiment, the 

bone formation markers did not change as a result of increasing dietary Ca and serum BAP 

actually tended to decrease as dietary Ca increased. This observation was not expected, but 

previous data also indicated that concentrations of serum BAP were reduced when growing pigs 

were fed high-Ca and P diets compared with low-Ca and P diets (Sørensen et al., 2018). It is 

possible this is a result of the fact that changes in bone formation takes up to 3 mo whereas only 

10 d are need for bone resorption (Seibel, 2005). In this experiment, sows were fed experimental 

diets for 2 wk and this may explain why only CTX-I concentration differed among dietary 

treatments. For other markers to show a change as a result of dietary changes in Ca concentration 

it is possible that a longer period of feeding is required. Nevertheless, the observation that CTX-

1 increased and the OC to CTX-1 ratio tended to increase as dietary Ca increased indicates that 

these biomarkers possibly can be used to estimate Ca status of gestating sows, but more research 

is needed to verify this hypothesis. 

 

CONCLUSION 

Data from this experiment indicate that P digestibility by late gestating sows decreases, 

but retention of P increases, as dietary Ca increases from below to at the requirement. Blood Ca, 

P, and hormones are not affected by dietary Ca if Ca and P levels do not exceed the requirement 
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for Ca. Some blood biomarkers may be useful in predicting bone resorption by late gestation 

sows, but verification of current results and quantification of bone mass relative to biomarker 

concentrations are needed for biomarkers to be used in requirement studies for gestating sows.  
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TABLES 

Table 7.1. Analyzed nutrient composition of feed ingredients (as-is basis) 

Item Corn Soybean 

meal 

Sugar beet 

pulp 

Calcium 

carbonate 

Monosodium 

phosphate 

Vitamin-mineral 

premix 

Sodium 

chloride 

Dry matter, % 86.3 92.0 89.5 99.9 99.7 96.4 99.7 

Gross energy, 

kcal/kg 

3,859 4,240 3,630 - - - - 

Crude 

protein, % 

7.1 49.8 7.3 - - - - 

Acid hydrolyzed 

ether extract, % 

4.3 2.3 3.0 - - - - 

Ash, % 1.3 6.6 6.6 93.3 91.4 55.9 99.8 

Ca, % - 0.30 0.82 37.8 0.05 2.04 0.25 

P, % 0.29 0.80 0.09 - 26.7 0.12 - 
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Table 7.2. Composition of experimental diets (as-is basis) 

 Ca level (% of the requirement1) 

Item 25 50 75 100 

Ingredient, %     

  Corn 76.45 76.45 76.45 76.45 

  Soybean meal 11.00  11.00  11.00  11.00  

  Sugar beet pulp 8.00  8.00  8.00  8.00  

  Calcium carbonate 0.15  0.62 1.09 1.55 

  Monosodium phosphate 1.10 1.10 1.10 1.10 

  Cornstarch 1.40  0.93 0.46 - 

  Soybean oil 1.20  1.20  1.20  1.20  

  L-Lys∙HCl, 78.8% Lys 0.10 0.10 0.10 0.10 

  L-Thr, 99% Thr 0.05 0.05 0.05 0.05 

  Sodium chloride 0.40  0.40  0.40  0.40  

  Vitamin-mineral premix2 0.15 0.15 0.15 0.15 

Analyzed composition, %     

  Metabolizable energy, 

kcal/kg3 

3,347 3,328 3,310 3,291 

  Dry matter 88.1 88.1 87.6 87.9 

  Crude protein 12.1 11.3 12.0 11.6 

  Ash 3.2 4.1 4.5 4.8 

  Total dietary fiber4 14.3 13.6 16.3 14.5 

  Soluble dietary fiber 2.0 1.4 2.6 2.0 

  Insoluble dietary fiber 12.3 12.2 13.7 12.5 
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Table 7.2 (Cont.)     

  Ca 0.18 0.36 0.59 0.71 

  P 0.61 0.61 0.61 0.57 

  Ca:P ratio 0.30:1 0.59:1 0.97:1 1.25:1 

 1The requirement estimate is based on the requirement for Ca by gestating sows that are 

in their third parity and in late gestation (NRC, 2012).  

2The vitamin-micromineral premix provided the following quantities of vitamins and 

micro minerals per kg of complete diet: vitamin A as retinyl acetate, 11,150 IU; vitamin D3 as 

cholecalciferol, 2,210 IU; vitamin E as selenium yeast, 66 IU; vitamin K as menadione 

nicotinamide bisulfate, 1.42 mg; thiamin as thiamine mononitrate, 1.10 mg; riboflavin, 6.59 mg; 

pyridoxine as pyridoxine hydrochloride, 1.00 mg; vitamin B12, 0.03 mg; D-pantothenic acid as D-

calcium pantothenate, 23.6 mg; niacin, 44.1 mg; folic acid, 1.59 mg; biotin, 0.44 mg; Cu, 20 mg 

as copper chloride; Fe, 125 mg as iron sulfate; I, 1.26mg as ethylenediamine dihydriodide; Mn, 

60.2 mg as manganese hydroxychloride; Se, 0.30mg as sodium selenite and selenium yeast; and 

Zn, 125.1mg as zinc hydroxychloride. 

3Values for metabolizable energy were calculated rather than analyzed (NRC, 2012). 

4Total dietary fiber = soluble dietary fiber + insoluble dietary fiber. 
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Table 7.3. Calcium and P balances for sows in late gestation fed diets containing different levels 

of Ca (n = 9) 

 Ca level (% of the requirement1)    P-value2 

Item 25 50 75 100  SEM  Lin. Quad. 

Feed intake, kg/d 3.05 3.09 3.05 3.08   0.13  0.834 1.000 

Fecal excretion, kg dry matter/d 0.29 0.31 0.30 0.32   0.02  0.116 0.884 

Urine excretion, kg/d 3.99 4.76 7.87 4.80   1.39  0.380 0.177 

ATTD of dry matter3, % 89.11 88.80 88.82 88.47   0.54  0.156 0.955 

Ca balance                  

Ca intake, g/d 5.7 10.8 16.0 21.0   0.5  <0.001 0.935 

Fecal Ca output, g/d 6.2 9.3 12.8 16.5   1.0  <0.001 0.571 

Absorbed Ca, g/d -0.4 1.6 3.3 4.7   0.8  <0.001 0.601 

ATTD of Ca, % -7.49 14.34 20.59 22.04   5.95  <0.001 0.039 

Urine Ca output, g/d 0.1 0.1 0.1 0.1   0.04  0.300 0.581 

Ca retention, g/d -0.5 1.6 3.2 4.6   0.7  <0.001 0.592 

Ca retention, % of intake -9.33 13.53 19.83 21.45   5.87  <0.001 0.034 

Ca retention, % of absorbed4 - 99.88 99.80 96.08   5.29  0.491 0.705 

P balance               

P intake, g/d 18.6 18.8 18.6 18.8   0.8  0.822 0.967 

Fecal P output, g/d 11.5 13.1 13.2 14.4   0.9  <0.001 0.673 

Absorbed P, g/d 7.0 5.7 5.3 4.3   0.6  <0.001 0.680 

ATTD of P, % 39.02 31.26 29.72 23.97   3.01  <0.001 0.677 

Urine P output, g/d 4.9 3.8 2.2 1.3   0.3  <0.001 0.770 
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Table 7.3. (Cont.)          

P retention, g/d 2.3 2.0 3.2 3.3   0.5  0.031 0.704 

P retention, % of intake 12.33 10.90 17.87 17.86   3.19  0.026 0.755 

P retention, % of absorbed 28.39 29.49 50.83 69.03   7.93  <0.001 0.093 

 1The requirement estimate is based on the requirement for Ca by gestating sows that are 

in their third parity and in late gestation (NRC, 2012). 

2Lin. = linear effect of Ca level; Quad. = quadratic effect of Ca level. 

3ATTD = apparent total tract digestibility. 

4Regardless of calculated value, Ca retention was assumed to be close to zero. Therefore, 

the first diet was excluded to test the linear and quadratic effects of dietary Ca.  
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Table 7.4. Regression of apparent total tract digested Ca (g/d) against dietary Ca intake (g/d) of 

sows fed diets containing 4 levels of calcium carbonate 

Item Calcium carbonate 

Regression equation Y = – 2.1230 + 0.3318X  

SE of slope 0.02 

SE of intercept 0.27 

Coefficient of determination (r2) 0.994 

Endogenous loss of Ca, g/d 2.12 

Endogenous loss of Ca, g/dry matter intake 0.79 

True total tract Ca digestibility, % 33.18 
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Table 7.5. Calcium and P concentrations, bone resorption and formation biomarkers, and 

hormone concentrations in serum samples of late gestation sows fed diets containing different 

levels of Ca  (n = 9) 

 Ca level (% of the requirement1)    P-value2 

Item 25 50 75 100  SEM  Lin. Quad. 

Ca, mg/L 93 92 91 92  2.1  0.713 0.539 

P, mg/L 81 79 79 83  2.8  0.560 0.162 

Hormones          

Estrogen, µg/L 2.1 2.0 2.0 2.0  0.16  0.546 0.706 

Calcitonin, µg/L 2.7 2.7 2.5 2.5  0.14  0.230 0.935 

Parathyroid hormone, µg/L 1.7 1.8 1.6 1.6  0.10  0.348 0.758 

Bone resorption biomarker          

CTX-I3, µg/L 1.5 1.0 1.4 0.2  0.39  0.033 0.296 

Bone formation biomarkers          

Bone alkaline phosphatase, µg/L 12.1 10.7 10.5 10.2  1.15  0.091 0.506 

Osteocalcin, µg/L  16.6 18.7 18.8 19.0  1.37  0.176 0.446 

Osteocalcin/CTX-I 25 42 43 82  21.5  0.055 0.570 

 1The requirement estimate is based on the requirement for Ca by gestating sows that are 

in their third parity and in late gestation (NRC, 2012). 

2Lin. = linear effect of Ca level; Quad. = quadratic effect of Ca level. 

3CTX-I = cross-linked C-telopeptide of type I collagen. 
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CHAPTER 8: CONCLUSION  

Values for standardized total tract digestibility (STTD) are believed to be additive in a 

complete diet. Therefore, use of STTD values may result in the most accurate diet formulations 

and values for the STTD of Ca and P in most feed ingredients fed to growing pigs have been 

reported in recent years. By supplementing exogenous phytase to diets fed to growing pigs, the 

STTD of both Ca and P in feed ingredients may increase and, therefore, it is necessary to 

determine the STTD values in feed ingredients without or with phytase. 

In practical diet formulation, values for the STTD of Ca and P obtained in growing pigs 

are also applied to sows. However, gestating sows have reduced digestibility and retention of Ca 

and P compared with growing pigs, and the impact of microbial phytase on the digestibility of P 

and Ca is much less in sows than in growing pigs. Applying STTD values for Ca and P obtained 

in growing pigs to diets for gestating sows, therefore, results in an overestimation of the 

absorbed Ca and P in sows. Further research, however, indicated that the digestibility of Ca and 

P in late gestating sows was greater than in sows in early or mid-gestation and retention of Ca 

and P was greater in late-gestation compared with earlier gestation periods, which indicates that 

digestion and absorption of Ca and P may be under hormonal control in sows. It was also 

demonstrated that a wide Ca:P ratio decreased P digestibility in sows in late-gestation, which 

demonstrates the need for not overfeeding STTD Ca. In follow-up research, it was demonstrated 

that several serum biomarkers may be used to predict if a sow is in a positive or a negative Ca 

and P state, but more research is needed to quantify this effect and to determine if biomarkers 

can be used in Ca and P requirement experiments.  

Overall, gestating sows have much lower digestibility of Ca and P than growing pigs, 

which demonstrates that digestibility values obtained in growing pigs cannot be used to 
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accurately formulate diets for gestating sows. Likewise, effects of microbial phytase on 

digestibility of Ca and P are much less predictable in gestating sows than in growing pigs and 

phytase effects in sows are much smaller than in growing pigs. 


