Intestinal absorption

Influence of the concentration of dietary digestible calcium on growth performance, bone ash, and abundance of genes involved in intestinal absorption of calcium in pigs from 11 to 25 kg fed diets with different concentrations of digestible phosphorus

Requirements for P for growing pigs are expressed as the requirement for standardized total tract digestible (STTD) P, whereas requirements for Ca are usually expressed as requirements for total Ca. It is, however, recognized that diets for pigs are most accurately formulated based on a STTD Ca:STTD P ratio, and recent work has generated values for STTD of Ca in most Ca containing feed ingredients, which makes it possible to formulate diets based on STTD Ca.

Recent data from the University of Illinois have indicated that if STTD P is at the requirement, a ratio between STTD Ca and STTD P that is less than 1.35:1, 1.25:1, and 1.10:1 maximizes growth performance of pigs from 25 to 50 kg, 50 to 85 kg, and 100 to 130 kg, respectively. However, the STTD Ca:STTD P ratio needed to maximize bone ash is greater than the ratio needed to maximize growth performance. An attempt to estimate the requirement for STTD Ca by pigs from 11 to 25 kg was also made, but due to a reduction in ADG and G:F as dietary Ca increased, an optimal STTD Ca:STTD P ratio could not be estimated.

Calcium may be absorbed by transcellular or paracellular transport. Transcellular transport is the primary route if dietary Ca is low, but if dietary Ca is adequate or high, Ca is mainly absorbed using the paracellular route via the tight junctions. However, there are limited data demonstrating effects of dietary Ca concentration on abundance of genes related to transcellular and paracellular transport of Ca in the small intestine of pigs.

Therefore, the objectives of this experiment were to test the hypotheses that a STTD Ca:STTD P ratio less than 1.40:1 maximizes growth performance of pigs from 11 to 25 kg and that increasing dietary Ca downregulates abundance of genes related to transcellular absorption of Ca and tight junction proteins in the small intestine.

 

Authors: 
Publication Type: