Group-Housed

Concentration of net energy in diets containing three different sources of field peas with different particle sizes fed to group-housed growing pigs

Field peas (Pisum sativum L.) are an annual season grain legume crop and are cultivated in areas that are too cold for the cultivation of soybeans. Market opportunities for field peas have increased in recent years, and the cost of cultivation is less for peas than for soybeans. The concentration of starch in field peas is less, but crude protein and amino acids are greater than in cereal grains. Therefore, in addition to providing amino acids, field peas also provide energy to swine diets, which is important because energy is the most expensive component in diets. As a consequence, it is important to determine the energy value of field peas. Agronomic practices, growing location, and differences among varieties may impact the nutritional properties of field peas, including energy digestibility. It was also observed that in-vitro energy digestibility of field peas was increased by reducing the particle size. However, there is no information on the effects of reducing particle size on concentrations of digestible energy (DE), metabolizable energy (ME), or net energy (NE) in field peas fed to group-housed pigs. Likewise, the digestibility of energy in field peas grown in the U.S. has not been compared with the digestibility of energy of field peas grown in Canada. Therefore, the objective of this research was to test the hypothesis that the particle size of field peas and the location where field peas were grown may affect the apparent total tract digestibility (ATTD) of gross energy (GE) and concentration of NE in field peas fed to growing pigs.  

Authors: 
Publication Type: 

Concentration of net energy in corn without or with microbial phytase fed to group-housed pigs

Corn is the primary grain used in pig diets and provides most energy to the diets. Because energy is the most expensive component in diet formulation, it is critical to accurately determine energy concentrations in corn. Use of exogenous phytase in pig diets has been a standard and most phytase is expected to generate extra-phosphoric effects that result in increases in minerals, amino acid, or energy digestibility. Therefore, phytase companies have provided customers with matrix values that can be used for down specs of energy and nutrients in diet formulation. It is thus important to confirm if dietary phytase releases energy and other nutrients as suggested before using them. To our knowledge, however, there is no information on how much phytase can increase net energy (NE) in corn when fed to group-housed pigs. Therefore, the objective of this experiment was to test the hypothesis that addition of microbial phytase to a corn-based diet increased the apparent total tract digestibility (ATTD) of gross energy (GE) and concentration of NE by group-housed growing pigs.

Authors: 
Publication Type: 

Both pelleting and reducing particle size of corn increase net energy and digestibility of amino acids and fat in corn-soybean meal diets fed to growing pigs

Pelleting and reducing particle size of grains often improve nutrient digestibility by pigs. Pelleting may also reduce particle size of grains, and it is not known if improvements in nutrient digestibility obtained by reducing the particle size of grain and improvements obtained by pelleting are additive or if there are interactions between particle size reduction and pelleting. Therefore, two experiments were conducted to test the hypothesis that particle size reduction and pelleting, separately or in combination, increase the apparent ileal digestibility (AID) of starch, the standardized ileal digestibility (SID) of amino acids (AA), N balance, apparent total tract digestibility (ATTD) of gross energy (GE), fiber, and fat, and net energy (NE) in corn-soybean meal diets fed to growing pigs.

Authors: 
Publication Type: 

Effects of different watering options on net energy in diets fed to group-housed pigs

Depending on how facility allows pigs to drink water, considerable amounts of feeds can be wasted, which may affect digestibility of nutrients by pigs. Therefore, the objective of this experiment was to test the hypothesis that different watering options affect concentration of net energy (NE) in a corn-soybean meal diet fed to growing pigs.

Authors: 
Publication Type: