Phytase

Effects of increasing phytase dose on total tract digestibility of minerals and energy in pigs

In most plant feed ingredients, the majority of P is bound to phytate, which reduces digestibility of P in pigs, and therefore, the concentration of digestible P in these ingredients is relatively low. Phytate is negatively charged in the intestinal tract and can bind both endogenous and dietary nutrients, which results in precipitation of non-digestible nutrient-phytate complexes. Therefore, it is possible that the use of exogenous phytase can also increase the digestibility of other nutrients than P. As an example, addition of exogenous phytase to diets also releases Ca from phytate, and thus, increases the digestibility of Ca. However, it has not been conclusively demonstrated that phytase also increases the digestibility of energy-generating nutrients and other minerals in diets fed to pigs and inconsistent results among experiments have been reported. Therefore, the objective of this experiment was to test the hypothesis that increasing phytase dose increases the apparent total tract digestibility (ATTD) of minerals and gross energy (GE) in corn and soybean meal-based diets fed to growing pigs.

Authors: 
Publication Type: 

Influence of a novel consensus bacterial 6-phytase variant on mineral digestibility and bone ash in young growing pigs fed diets with different concentrations of phytate-bound phosphorus

Espinosa, Charmaine D., Maryane S. F. Oliveira, Deepak E. Velayudhan, Yueming Dersjant-Li, Hans H. Stein. 2021. Influence of a novel consensus bacterial 6-phytase variant on mineral digestibility and bone ash in young growing pigs fed diets with different concentrations of phytate-bound phosphorus. Journal of Animal Science, 2021, Vol. 99, No. 8, 1–12. doi.org/10.1093/jas/skab211.

Reduced concentrations of limestone and monocalcium phosphate in diets without or with microbial phytase did not influence gastric pH, fecal score, or growth performance, but reduced bone ash and serum albumin in weanling pigs

Lagos, L. Vanessa, Su A Lee, Mike R. Bedford, and Hans H. Stein. 2021. Reduced concentrations of limestone and monocalcium phosphate in diets without or with microbial phytase did not influence gastric pH, fecal score, or growth performance, but reduced bone ash and serum albumin in weanling pigs. Transl. Anim. Sci. 2021.5:1-10. doi.org/10.1093/tas/txab115.

Authors: 

Effect of phytase on weaning piglet performance when fed diets supplemented with pharmacological levels of Zn

Pharmacological levels of Zn (i.e., 2,000 to 3,000 mg/kg) is often included in diets for weanling pigs to prevent post-weaning diarrhea. However, pharmacological levels of Zn may reduce microbial phytase efficacy by chelating the phytate molecule, which subsequently prevents access for phytase.  However, it is possible that this effect can be reduced by adding more phytase to diets. Therefore, an experiment was conducted to test the hypothesis that inclusion of increasing levels of phytase increases pig growth performance and mineral digestibility in diets with 3,000 mg/kg of Zn.

Authors: 
Publication Type: 

Effects of reducing the concentration of Ca and P and increasing microbial phytase on gastric pH, fecal score, plasma inositol, growth performance, and bone ash of weanling pigs

The limited capacity for weanling pigs to secret HCl in the stomach may be exacerbated by inclusion of ingredients with high acid binding capacity such as limestone and monocalcium phosphate. As a consequence, reducing the amount of these 2 ingredients in diets for weanling pigs may contribute to a stable low pH for proper pepsin activity and increased action of microbial phytase. Inclusion of high doses of phytase that results in increased phytate degradation and increased release of Ca, P, and inositol may also be beneficial to newly weaned pigs. Therefore, an experiment was conducted to test the hypothesis that lowering dietary Ca and P reduces gastric pH and diarrhea of weanling pigs, but microbial phytase may overcome negative effects of low Ca and P on growth performance and bone ash.

Authors: 
Publication Type: 

Formulation of diets for pigs based on a ratio between digestible calcium and digestible phosphorus results in reduced excretion of calcium in urine without affecting retention of calcium and phosphorus compared with formulation based on values for total

Lagos, L. Vanessa, Su A Lee, Mike R. Bedford, and Hans H. Stein. 2021. Formulation of diets for pigs based on a ratio between digestible calcium and digestible phosphorus results in reduced excretion of calcium in urine without affecting retention of calcium and phosphorus compared with formulation based on values for total calcium. Journal of Animal Science, 2021, Vol. 99, No. 5, 1–7. doi:10.1093/jas/skab138.

Authors: 

Formulating diets based on digestible calcium instead of total calcium does not affect growth performance or carcass characteristics, but microbial phytase ameliorates bone resorption caused by low calcium in diets fed to pigs from 11 to 130 kg

Lagos, L. Vanessa, Su A Lee, Mike R. Bedford, and Hans H. Stein. 2021. Formulating diets based on digestible calcium instead of total calcium does not affect growth performance or carcass characteristics, but microbial phytase ameliorates bone resorption caused by low calcium in diets fed to pigs from 11 to 130 kg. Journal of Animal Science, 2021, Vol. 99, No. 3, 1–11. doi:10.1093/jas/skab057.

Authors: 

Effect of reducing the concentration of limestone and monocalcium phosphate in diets without or with microbial phytase on gastric pH, fecal score, growth performance, and bone ash of weanling pigs

Weanling pigs have reduced secretion of HCl in the stomach needed for appropriate protein digestion. Therefore, acidifiers are sometimes used in weaning diets as alternatives to antibiotic growth promoters because these products may create a favorable environment in the stomach for proper pepsin activity. However, the presence of limestone and monocalcium phosphate (MCP) in phase 1 diets, which have a high buffer capacity, may contribute to the inability for pigs to secrete enough HCl in the stomach, and lowering the inclusion level of these ingredients in starter diets may be beneficial to young pigs. Therefore, the objective of this experiment was to test the hypothesis that reducing the amount of limestone and MCP in diets for weanling pigs, by lowering the concentration of dietary Ca and P and(or) by including microbial phytase in the diet, will reduce stomach pH and fecal score and therefore improve growth performance of pigs.

Authors: 
Publication Type: 

The effect of increasing phytase dose to 1000 FTU/kg on phosphorous and calcium digestibility in pigs fed diets without inorganic P

Rundle, Carly M., Barthold Hillen, Yueming Dersjant-Li, Anne-Marie Debicki-Garnier, Hans H Stein. 2020. The effect of increasing phytase dose to 1000 FTU/kg on phosphorous and calcium digestibility in pigs fed diets without inorganic P. Journal of Animal Science, Volume 98, Issue Supplement_4, November 2020, Pages 100-101. (Abstr.). Link to abstract.

Publication Type: 

Influence of a novel consensus bacterial 6-phytase variant on mineral digestibility and bone ash in young growing pigs fed diets with different concentrations of phytate

Microbial phytase is usually included in diets for pigs to increase P absorption and utilization by hydrolyzing phytate within the gastrointestinal tract of pigs. High doses of phytase (i.e., > 1,000 FTU/kg) is also hypothesized to increase release of nutrients other than P due to increased degradation of phytate. A next generation biosynthetic bacterial 6-phytase (PhyG; DuPont Animal Nutrition) may increase digestibility of nutrients in diets for pigs; however, there are no data to demonstrate the efficacy of this phytase. Therefore, an experiment was conducted to test the hypothesis that the negative impact of phytate is reduced at higher phytase doses. It was also the objective of this research to test the hypothesis that inclusion of increasing levels of phytase increases bone ash and apparent total tract digestibility (ATTD) of minerals in diets containing varying phytate concentrations.

Authors: 
Publication Type: 

Effect of formulating diets based on a ratio between STTD Ca and STTD P and the inclusion of phytase on the calcium and phosphorus balance of growing pigs

Several experiments were conducted to estimate Ca digestibility in different feed ingredients in the presence or absence of microbial phytase to allow formulation of diets for pigs to be based on standardized total tract digestible (STTD) Ca instead of total Ca. Thus, 4 experiments aimed at determining Ca requirements expressed as a ratio between STTD Ca and STTD P in pigs from 11 to 130 kg. A follow-up study was later conducted to validate those data and to evaluate the effect of using ratios that maximize growth performance on bone development because maximum bone ash requires more Ca than maximum growth performance. However, data indicate that STTD Ca to STTD P ratios to maximize Ca retention are greater than to maximize bone ash synthesis. The use of STTD Ca to STTD P ratios in diet formulation may result in a reduction in excess dietary Ca, which is beneficial because excess dietary Ca is detrimental to P digestibility and growth performance of pigs. Therefore, the objective of this experiment was to test the hypothesis that formulating diets for growing pigs based on a ratio between STTD Ca and STTD P instead of total Ca and STTD P does not decrease Ca retention, but increases P utilization.

Authors: 
Publication Type: 

Effect of formulating diets based on a ratio between STTD Ca and STTD P and the inclusion of phytase on growth performance, bone ash, plasma Ca and P, and carcass characteristics of pigs from 11 to 130 kg

Calcium requirements by pigs are expressed as total Ca because of a lack of data for the digestibility of Ca in feed ingredients, but it is believed that a ratio between standardized total tract digestible (STTD) Ca and STTD P is a more appropriate way to express requirements for Ca by pigs. Values for Ca digestibility in different Ca-containing feed ingredients were recently generated using diets without or with microbial phytase, which allowed for the formulation of diets based on STTD Ca values. A number of experiments were also conducted to determine STTD Ca to STTD P requirements to optimize growth performance and bone mineralization of pigs from 11 to 25 kg, 25 to 50 kg, 50 to 85 kg, and 100 to 130 kg. However, these experiments were performed independently and in experiments lasting only 3 to 5 weeks. Therefore, a follow-up experiment was conducted to test the hypothesis that the requirement for Ca expressed as a ratio between STTD Ca and STTD P obtained in short-term experiments may be applied to pigs fed diets without or with microbial phytase from 11 to 130 kg.

Authors: 
Publication Type: 

Effects of super dosing 4 different sources of phytase on amino acid digestibility

Dietary phytate may bind to proteins from feed ingredients by making indigestible nutrient-complexes. Therefore, it is possible that adding exogenous phytase to the diets increases digestibility of amino acids (AA). However, results of experiments in which microbial phytase has been added to diets fed to pigs have not consistently demonstrated increased ileal digestibility of AA. It is, however, possible that is because the dose of phytase was too low to obtain a positive effect on AA digestibility and that if greater doses were used, a positive response would be obtained. Therefore, the objective of this experiment was to test the hypothesis that super dosing four different sources of commercially available exogenous phytase increases the apparent ileal digestibility (AID) of CP and AA in a corn-soybean meal (SBM) based diet fed to growing pigs.

Authors: 
Publication Type: 

Effects of graded levels of phytase on digestibility of nutrients, growth performance, and bone ash in corn and soybean meal based diets fed to pigs

Lee, S. A., and H. H. Stein. 2019. Effects of graded levels of phytase on digestibility of nutrients, growth performance, and bone ash in corn and soybean meal based diets fed to pigs. In: 80th Minnesota Nutrition Conference, Mankato, MN, Sep. 18-19, 2019. P. 25. (Abstr.). Link to abstract

Authors: 
Publication Type: 

PSIV-13 Basal endogenous loss, standardized total tract digestibility, and retention of Ca in sows change throughout gestation, but microbial phytase reduces basal endogenous loss of Ca by gestating sows

Lee Su A., Carrie L. Walk, Hans H. Stein. 2019. PSIV-13 Basal endogenous loss, standardized total tract digestibility, and retention of Ca in sows change throughout gestation, but microbial phytase reduces basal endogenous loss of Ca by gestating sows. Journal of Animal Science, Volume 97, Issue Supplement_2, July 2019, Pages 185–186. (Abstr.). Link to abstract.

Authors: 
Publication Type: 

PSIII-18 Standardized total tract digestibility of Ca by growing pigs in different sources of calcium carbonate and dicalcium phosphate

Lee Su A., Carrie L. Walk, Hans H. Stein. 2019. PSIII-18 Standardized total tract digestibility of Ca by growing pigs in different sources of calcium carbonate and dicalcium phosphate. Journal of Animal Science, Volume 97, Issue Supplement_2, July 2019, Pages 173–174. (Abstr.). Link to abstract.

Authors: 
Publication Type: 

Effects of a novel corn-expressed E. coli phytase on digestibility of calcium and phosphorous, growth performance, and bone ash in young growing pigs

Blavi, Laia, Cristhiam J. Muñoz, Jonathan N. Broomhead, and Hans H. Stein. 2019. Effects of a novel corn-expressed E. coli phytase on digestibility of calcium and phosphorous, growth performance, and bone ash in young growing pigs. J. Anim. Sci. 2019.97:3390–3398. Link to full text.

Standardized total tract digestibility of calcium varies among sources of calcium carbonate, but not among sources of dicalcium phosphate, but microbial phytase increases calcium digestibility in calcium carbonate

Lee, Su A, L. Vanessa Lagos, Carrie L. Walk, and Hans H. Stein. 2019. Standardized total tract digestibility of calcium varies among sources of calcium carbonate, but not among sources of dicalcium phosphate, but microbial phytase increases calcium digestibility in calcium carbonate. J. Anim. Sci. 2019.97:3440–3450.

Authors: 

Phosphorus and energy digestibility of Fermex 200 (fermented soybean meal) fed to weanling pigs

Soybean meal (SBM) is one of the most important protein sources in swine diets. However, most P in SBM is bound to phytate, which increases inclusion of inorganic P in diets for pigs. Use of microbial phytase may hydrolyze phytate and subsequently improve P absorption. Fermex 200 (Purina Animal Nutrition, Shoreview, MN, USA) is a new source of fermented SBM that may serve as an alternative to other protein sources in diets fed to pigs. However, there are at this point no data for effects of adding phytase to diets containing Fermex 200 and no data for digestible energy (DE) and metabolizable energy (ME) concentrations of Fermex 200.

Therefore, 2 experiments were conducted to test the hypothesis that inclusion of 1,000 phytase units (FTU)/kg of microbial phytase improves the standardized total tract digestibility (STTD) of P in conventional SBM and Fermex 200. The second hypothesis was that the STTD of P, as well as concentrations of DE and ME in Fermex 200 are greater than in conventional SBM.

Authors: 
Publication Type: 

Zinc oxide and microbial phytase may reduce calcium and phosphorus digestibility

Blavi, L., and H. H. Stein. 2017. Zinc oxide and microbial phytase may reduce calcium and phosphorus digestibility. National Hog Farmer, Online edition, March 30, 2017. Link to full text.

Keywords: 
Authors: 

Pages