Soybean meal (SBM) is the primary plant-protein source in diets for pigs and provides both amino acids (AA) and energy to the diets. Current estimates for net energy in SBM are less than for cereal grains, based on the assumption that there is more nitrogen to be deaminated if ingredients are high in protein because deamination and excretion of nitrogen via the urea cycle are energy-requiring processes, and therefore, reduce energy efficiency. It has been suggested that pigs retain only 45 to 50% of absorbed nitrogen, which corresponds to 40 to 45% of ingested nitrogen. Modern genotypes of pigs, however, have improved the capacity for protein synthesis and may retain more nitrogen than older genotypes, which would result in less AA deamination and, therefore, less energy loss to deaminate AA and excrete nitrogen. Indeed, results of recent research indicate that pigs fed corn-SBM based diets retain more than 60% of ingested nitrogen, indicating that protein retention by modern genotypes of pigs is more efficient than by older genotypes. It is likely that as breeding companies have selected for leaner pigs, they have also selected genotypes that are more efficient in converting dietary protein into body protein. It is, however, not known if the greater nitrogen retention that has been recently reported is experienced by all pigs regardless of body weight (BW) and if it is true for all types of diets regardless of the dietary level of protein. Therefore, the objective of this experiment was to test the hypothesis that nitrogen retention, measured as a percent of nitrogen consumed, is greater than 50% regardless of the dietary protein level and the BW of pigs.