González-Vega

Phosphorus digestibility in canola, cottonseed, and sunflower products fed to growing pigs

Soybean meal is a high quality source of protein for swine diets. Due to the growth in global production of pigs and poultry, demand for soybeans is increasing rapidly, outpacing production. Therefore, other sources of plant protein are sometimes used in diets to supply indispensable amino acids to the animals.
The most abundant oilseeds produced in the world, aside from soybeans, are cottonseed, canola seed (rapeseed), and sunflower seed. These oilseeds may be fed as de-oiled meals, or the full fat seeds can be fed to increase the energy concentration of the diet.

Oilseeds and oilseed meals also provide phosphorus to the diet. However, most of the phosphorus in these sources is bound to phytate, and is not available to pigs. An experiment was performed to determine the standardized total tract digestibility (STTD) of phosphorus in canola, cottonseed, and sunflower products, and to discover how the addition of phytase influences the STTD of phosphorus. The apparent total tract digestibility (ATTD) of calcium and the effect of adding phytase on ATTD of calcium were also measured.

Publication Type: 

Determination of endogenous intestinal losses of Ca and digestibility of Ca in canola meal fed to growing pigs

González-Vega, J. C., C. L. Walk, and H. H. Stein. 2012. Determination of endogenous intestinal losses of Ca and digestibility of Ca in canola meal fed to growing pigs. J. Anim. Sci. 90(E-Suppl. 3):190 (Abstr.) Link to abstract (.pdf)

Publication Type: 

Energy concentration in canola, cottonseed, and sunflower products fed to growing pigs

Soybean meal is a high quality source of protein for swine diets. Due to the growth in global production of pigs and poultry, demand for soybeans is increasing rapidly, outpacing production. Therefore, other sources of plant protein are sometimes used in diets to supply indispensable AA to the animals.

The most abundant oilseeds produced in the world, aside from soybeans, are cottonseed, canola seed (rapeseed), and sunflower seed. These oilseeds may be fed as de-oiled meals, or the full fat seeds can be fed to increase the energy concentration of the diet.

There are no recent data on energy digestibility in canola, cotton, and sunflower products. Therefore, an experiment was conducted to measure the digestible energy (DE) and metabolizable energy (ME) in canola seeds (CS), canola meal (CM), cottonseed meal (CSM), sunflower seeds (SFS), sunflower meal (SFM), and dehulled sunflower meal (SFM-DH), and to compare these values to the DE and ME in soybean meal (SBM).

Publication Type: 

Determination of endogenous intestinal losses of calcium and apparent and true total tract digestibility of calcium in canola meal fed to growing pigs

When formulating diets for pigs, it is more accurate to use values for standardized or true nutrient digestibility than values for apparent nutrient digestibility because the former are additive in mixed diets. No values for standardized or true total tract digestibility of calcium in pigs have been reported. The true total tract digestibility (TTTD) of a nutrient is calculated by correcting apparently total tract digestibility (ATTD) by total endogenous losses, which may be estimated using a regression procedure. To our knowledge, no measurements of the endogenous loss of calcium in pigs have been reported. An experiment was, therefore,  performed to measure endogenous loss of calcium and to determine TTTD of calcium in growing pigs, and to investigate if  the addition of microbial phytase to the diets affects TTTD of calcium. In addition, calcium retention was measured in pigs fed diets containing varying levels of calcium with or without microbial phytase.

Publication Type: 

Amino acid digestibility in heated soybean meal fed to growing pigs

Soybean meal fed to pigs undergoes heat treatment to destroy trypsin inhibitors and other antinutritional factors that impair the digestion of protein and thus reduce performance. However, heat treatment can damage nutrients as well. In particular, the Maillard reaction reduces amino acid digestibility by combining amino acids with sugars to produce biologically unavailable compounds.

An experiment was conducted to determine the digestibility of amino acids in pigs fed soybean meal that had been heat treated in varying ways and for varying times. Conventional soybean meal was divided into four batches. One batch was not heated; one was autoclaved at 125°C for 15 minutes; one was autoclaved at 125°C for 30 minutes; and the last one was oven dried at 125°C for 30 minutes. Ten growing barrows were fed a total of five different diets. The experimental diets contained 40% each of the four different soybean meals being tested. An N-free diet was also formulated and fed to measure the basal endogenous loss of protein and amino acids.

Publication Type: 

Amino acid digestibility in heated soybean meal fed to growing pigs

González-Vega, J. C., B. G. Kim, J. K. Htoo, A. Lemme, and H. H. Stein. 2011. Amino acid digestibility in heated soybean meal fed to growing pigs. J. Anim. Sci. 89:3617-3625. Link to full text (.pdf)

Digestibility of AA in canola-, cotton-, and sunflower-products fed to finishing pigs

González, J. C. and H. H. Stein. 2011. Digestibility of AA in canola-, cotton-, and sunflower-products fed to finishing pigs. J. Anim. Sci. 89(E-Suppl. 2):100 (Abstr.) Link to abstract (.pdf)

Publication Type: 

Amino acid digestibility in canola-, cotton- and sunflower-products fed to finishing pigs

Soybean meal is a high quality source of protein for swine diets. Due to the growth in global production of pigs and poultry, demand for soybeans is increasing rapidly, outpacing production. Therefore, other sources of plant protein are being sought to lower feed costs.

The most abundant oilseeds produced in the world, aside from soybeans, are cottonseed, canola seed (rapeseed), and sunflower seed. These may be fed as de-oiled meals, or the full fat seeds can be fed to increase the energy concentration of the diet.

Publication Type: 

Amino acid digestibility in heated soybean meal fed to growing pigs

González, J. C., B. G. Kim, A. Lemme, and H. H. Stein. 2010. Amino acid digestibility in heated soybean meal fed to growing pigs. J. Anim. Sci. 88(E-Suppl. 2):489 (Abstr.) Link to abstract (.pdf)

Publication Type: 

Pages