Metabolizable energy

Energy concentration and amino acid digestibility in high protein canola meal, conventional canola meal, and in soybean meal fed to growing pigs

Liu, Y., N. W. Jaworski, O. J. Rojas, and H. H. Stein. 2016. Energy concentration and amino acid digestibility in high protein canola meal, conventional canola meal, and in soybean meal fed to growing pigs. J. Anim. Feed Sci. Technol. 212:52-62. Link to full text (.pdf)

Authors: 

Use of feed technology to improve the nutritional value of feed ingredients

Rojas, O. J. and H. H. Stein. 2015. Use of feed technology to improve the nutritional value of feed ingredients. Page 23 in Advances in Animal Nutrition in Australia, Armidale, New South Wales, Australia, October 26-28, 2015. (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Concentrations of digestible, metabolizable, and net energy in soybean meal produced in different areas of the United States and fed to pigs

Sotak-Peper, K. M., J. C. González-Vega, and H. H. Stein. 2015. Concentrations of digestible, metabolizable, and net energy in soybean meal produced in different areas of the United States and fed to pigs. J. Anim. Sci. 93:5694-5701. Link to full text (.pdf)

Prediction of digestible and metabolisable energy in soybean meals produced from soybeans of different origins fed to growing pigs

Li, Z., X. Wang, P. Guo, L. Liu, X. Piao, H. H. Stein, D. Li, and C. Lai. 2015. Prediction of digestible and metabolisable energy in soybean meals produced from soybeans of different origins fed to growing pigs. Arch. Anim. Nutr. 69:473-486. Link to full text (.pdf)

Authors: 

Effects of reducing the particle size of corn grain on the concentration of digestible and metabolizable energy and on the digestibility of energy and nutrients in corn grain fed to growing pigs

Rojas, O. J. and H. H. Stein. 2015. Effects of reducing the particle size of corn grain on the concentration of digestible and metabolizable energy and on the digestibility of energy and nutrients in corn grain fed to growing pigs. Livest. Sci. 181:187-193. Link to full text (.pdf)

Authors: 

Effects of post-harvest storage duration and variety on nutrient digestibility and energy content wheat in finishing pigs

Guo, P. P., P. L. Li, Z. C. Li, H. H. Stein, L. Liu, T. Xia, Y. Y. Yang, and Y. X. Ma. 2015. Effects of post-harvest storage duration and variety on nutrient digestibility and energy content wheat in finishing pigs. Asian-Austr. J. Anim. Sci. 28:1488-1495. Link to full text (.pdf)

Authors: 

Energy concentration and amino acid digestibility in high-protein canola meal, conventional canola meal, and soybean meal fed to growing pigs

Berrocoso, J. D., O. J. Rojas, Y. Liu, J. Shoulders, J. C. González-Vega, and H. H. Stein. 2015. Energy concentration and amino acid digestibility in high-protein canola meal, conventional canola meal, and soybean meal fed to growing pigs. J. Anim. Sci. 93:2208-2217. Link to full text (.pdf)

Effects of chemical, physical, or enzymatic treatments on concentration of digestible and metabolizable energy and on ATTD of energy, organic matter, and detergent fiber in distillers dried grains with solubles fed to growing pigs

Rojas, O. J. and H. H. Stein. 2015. Effects of chemical, physical, or enzymatic treatments on concentration of digestible and metabolizable energy and on apparent total tract digestibility of energy, organic matter, and detergent fiber in distillers dried grains with solubles fed to growing pigs. J. Anim. Sci. 93(Suppl. 2):135 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Effects of extrusion of corn and oats on the digestibility of energy and nutrients in diets fed to pigs

Liu, Y., O. J. Rojas, and H. H. Stein. 2015. Effects of extrusion of corn and oats on the digestibility of energy and nutrients in diets fed to pigs. J. Anim. Sci. 93(Suppl. 2):134-135 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Digestibility of energy and concentrations of digestible and metabolizable energy in processed soybean and rapeseed products fed to growing pigs

Navarro, D. M. D. L., Y. Liu, T. S. Bruun, and H. H. Stein. 2015. Digestibility of energy and concentrations of digestible and metabolizable energy in processed soybean and rapeseed products fed to growing pigs. J. Anim. Sci. 93(Suppl. 2):60 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Energy digestibility in 23 sources of distillers dried grains with solubles fed to pigs

Curry, S. M. and H. H. Stein. 2015. Energy digestibility in 23 sources of distillers dried grains with solubles fed to pigs. J. Anim. Sci. 93(Suppl. 2):59 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Comparative digestibility of energy and nutrients in diets fed to sows and growing pigs

Lowell, J. E., Y. Liu, and H. H. Stein. 2015. Comparative digestibility of energy and nutrients in diets fed to sows and growing pigs. Arch. Anim. Nutr. 69:79-97. Link to full text (.pdf)

Authors: 

Effects of xylanase on the concentration of digestible and metabolizable energy in rice co-products fed to weaning pigs

Several co-products from rice processing can be used as animal feed. Brown rice is the whole rice grain that is left after the hull layer has been removed, leaving the germ, starchy endosperm, and bran. Rice bran is the outer brown layer of brown rice, which is removed to produce white rice. It is high in fiber, and also contains about 15% crude protein and 14 to 20% fat. Rice bran can be fed as full fat rice bran or defatted rice bran. Broken rice, or brewer's rice, consists of white rice grains that have been damaged in processing. It is high in starch and contains little fat, fiber, or protein (Table 1).

Non–starch polysaccharides (NSPs), primarily arabinoxylan and cellulose, comprise 20 to 25% of defatted rice bran. NSPs reduce nutrient absorption and energy digestibility. Addition of exogenous xylanase to wheat co-products, which also have high concentration of NSPs, may improve digestibility of energy, but there is limited information about the effects of adding exogenous xylanases to rice co-products. Therefore, an experiment was conducted to determine the effect on concentrations of digestible energy (DE) and metabolizable energy (ME) of adding exogenous xylanase to diets containing full fat rice bran (FFRB), defatted rice bran (DFRB), brown rice, or broken rice.

Authors: 
Publication Type: 

Digestibility of energy and detergent fiber and digestible and metabolizable energy values in canola meal, 00-rapeseed meal, and 00-rapeseed expellers fed to growing pigs

Maison, T., Y. Liu, and H. H. Stein. 2015. Digestibility of energy and detergent fiber and digestible and metabolizable energy values in canola meal, 00-rapeseed meal, and 00-rapeseed expellers fed to growing pigs. J. Anim. Sci. 93:652-660. Link to full text (.pdf)

Authors: 

Energy concentration and phosphorus digestibility in yeast products produced from the ethanol industry, and in brewers’ yeast, fish meal, and soybean meal fed to growing pigs

Kim, B. G, Y. Liu, and H. H. Stein. 2014. Energy concentration and phosphorus digestibility in yeast products produced from the ethanol industry, and in brewers’ yeast, fish meal, and soybean meal fed to growing pigs. J. Anim. Sci. 92:5476-5484. Link to full text (.pdf)

Authors: 

Concentration of metabolizable energy and digestibility of energy, phosphorus, and amino acids in lemna protein concentrate fed to growing pigs

Rojas, O. J., Y. Liu, and H. H. Stein. 2014. Concentration of metabolizable energy and digestibility of energy, phosphorus, and amino acids in lemna protein concentrate fed to growing pigs. J. Anim. Sci. 92:5222-5229. Link to full text (.pdf)

Authors: 

Energy concentration and amino acid digestibility in corn and corn coproducts from the wet-milling industry fed to growing pigs

Liu, Y., M. Song, F. N. Almeida, S. L. Tilton, M. J. Cecava, and H. H. Stein. 2014. Energy concentration and amino acid digestibility in corn and corn coproducts from the wet-milling industry fed to growing pigs. J. Anim. Sci. 92:4557-4565. Link to full text (.pdf)

Amino acid digestibility and concentration of digestible and metabolizable energy in a threonine biomass product fed to weanling pigs

Almeida, F. N., R. C. Sulabo, and H. H. Stein. 2014. Amino acid digestibility and concentration of digestible and metabolizable energy in a threonine biomass product fed to weanling pigs. J. Anim. Sci. 92:4540-4546. Link to full text (.pdf)

Authors: 

Effects of protein concentration and heat treatment on concentration of digestible and metabolizable energy and on amino acid digestibility in four sources of canola meal fed to growing pigs

Liu, Y., M. Song, T. Maison, and H. H. Stein. 2014. Effects of protein concentration and heat treatment on concentration of digestible and metabolizable energy and on amino acid digestibility in four sources of canola meal fed to growing pigs. J. Anim. Sci. 92:4466-4477. Link to full text (.pdf)

Authors: 

Energy digestibility in 23 sources of distillers dried grains with solubles fed to pigs

Distillers dried grains with solubles (DDGS) is a co-product of the ethanol industry and is often used as an economical source of energy and protein in swine diets. Conventional DDGS contains approximately 27% crude protein, 10% fat, 9% acid detergent fiber (ADF), and 25% (NDF). The concentrations of digestible energy (DE) and metabolizable energy (ME) in conventional sources of DDGS are approximately 3,500 and 3,350 kcal/kg, respectively. However, there is significant variation in the way different plants produce DDGS. For example, in recent years ethanol plants have begun extracting oil from DDGS to sell to the biodiesel industry. This results in DDGS with its fat content reduced to approximately 6 to 9%, which may result in lower concentrations of DE and ME.

If pigs are fed diets containing decreased levels of DE and ME relative to conventional DDGS, a reduction in growth performance may result. This would make DDGS a less economical feedstuff. An experiment was conducted to determine the variability of DE and ME in DDGS produced in and around Illinois.

Authors: 
Publication Type: 

Pages