Stein

Concentration of digestible and metabolizable energy and digestibility of energy and nutrients by growing pigs in distillers dried grains with solubles produced in and around Illinois

Curry, S. M., O. J. Rojas, and H. H. Stein. 2016. Concentration of digestible and metabolizable energy and digestibility of energy and nutrients by growing pigs in distillers dried grains with solubles produced in and around Illinois. Prof. Anim. Sci. 32:687-694. Link to full text (.pdf)

Authors: 

Particle size of calcium carbonate does not affect apparent and standardized total tract digestibility of calcium, retention of calcium, or growth performance of growing pigs

Merriman, L. A. and H. H. Stein. 2016. Particle size of calcium carbonate does not affect apparent and standardized total tract digestibility of calcium, retention of calcium, or growth performance of growing pigs. J. Anim. Sci. 94:3844-3850. Link to full text (.pdf)

Authors: 

Use of the pig to determine digestible indispensable amino acid scores (DIAAS) in human foods

Stein, H. H., and J. K. Mathai. 2016. Use of the pig to determine digestible indispensable amino acid scores (DIAAS) in human foods. Proc. 5th Intl. Symp. Energy and Protein. Krakow, Poland, Sep. 12 to 15, 2016.

Authors: 
Publication Type: 

Effects of zinc oxide and microbial phytase on standardized total tract digestibility of calcium in diets fed to growing pigs

Zinc oxide, when added to weanling pig diets in pharmacological quantities of up to 2,500 mg/kg, can help prevent diarrhea during the post-weaning period. However, adding large quantities of zinc to diets has drawbacks. Zinc can interfere with calcium digestibility because it competes for the same transport pathway in cells lining the small intestine. Zinc may also reduce calcium digestibility by forming complexes with calcium and phytate.

The standardized total tract digestibility (STTD) of calcium in various ingredients has only recently been determined, and possible interactions between zinc and phytase on the STTD of calcium have not yet been reported. Therefore, an experiment was conducted to determine the effects of addition of zinc oxide and microbial phytase on STTD of calcium in diets fed to weanling pigs.

Publication Type: 

Calcium digestibility and requirements for digestible calcium by growing pigs

González-Vega, J. C., L. M. Merriman, and H. H. Stein. Calcium digestibility and requirements for digestible calcium by growing pigs. Pages 57-61 in Proc. Midwest Swine Nutr. Conf. Indianapolis, IN, Sep. 9, 2016. Link to full text (.pdf)

Publication Type: 

Digestibility of energy, amino acids, and phosphorus in a novel source of soy protein concentrate and in soybean meal fed to growing pigs

Oliveira, M. S. and H. H. Stein. 2016. Digestibility of energy, amino acids, and phosphorus in a novel source of soy protein concentrate and in soybean meal fed to growing pigs. J. Anim. Sci. 94:3343-3352. Link to full text (.pdf)

Authors: 

Requirement for digestible calcium by eleven- to twenty-five–kg pigs as determined by growth performance, bone ash concentration, calcium and phosphorus balances, and expression of genes involved in transport of calcium in intestinal and kidney cells

González-Vega, J. C., Y. Liu, J. C. McCann, C. L. Walk, J. J. Loor, and H. H. Stein. 2016. Requirement for digestible calcium by eleven- to twenty-five–kilogram pigs as determined by growth performance, bone ash concentration, calcium and phosphorus balances, and expression of genes involved in transport of calcium in intestinal and kidney cells. J. Anim. Sci. 94:3321-3334. Link to full text (.pdf)

Effects of feeding level and physiological stage on digestibility of GE and nutrients and concentration of DE and ME in full fat and defatted rice bran fed to gestating sows and growing gilts

Gestating sows have been found to have greater digestibility of energy than growing pigs. One possible explanation is that sows' larger intestinal tracts and more efficient fermentation of fiber allow them to extract more energy from their feed.

Gestating sows are usually restricted in their feed allowance while growing pigs are fed ad libitum. This confounds comparisons between sows and growing pigs because feeding level affects the rate at which feed passes through the intestinal tract and may affect the efficiency of digestion.

Therefore, an experiment was conducted to separate the effects of physiological stage from the effects of the level of feed intake on digestibility of gross energy (GE) and neutral detergent fiber (NDF) in full fat rice bran (FFRB) and defatted rice bran (DFRB).

Authors: 
Publication Type: 

Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure

Jaworski, N. W., D. W. Liu, D. F. Li, and H. H. Stein. 2016. Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure. J. Anim. Sci. 94:3012-3021. Link to full text (.pdf)

Authors: 

Effects of microbial phytase on the apparent and standardized total tract digestibility of calcium in milk co-products fed to growing pigs

Milk co-products are used in pig diets to provide lactose and, in some cases, high quality protein. In addition, milk co-products also provide calcium to the diets. However, this calcium can potentially bind to the phytate contained in the plant ingredients in the diets, which would reduce its digestibility.

Authors: 
Publication Type: 

Effect of increasing concentrations of digestible calcium and digestible phosphorus on apparent total tract digestibility of calcium and phosphorus by pigs

González-Vega, J. C., C. L. Walk, M. R. Murphy, and H. H. Stein. 2016. Effect of increasing concentrations of digestible calcium and digestible phosphorus on apparent total tract digestibility of calcium and phosphorus by pigs. J. Anim. Sci. 94(E-Suppl. 5):459 (Abstr.) Link to abstract (.pdf)

Publication Type: 

Effects of inclusion of canola meal in weanling pig diets containing different concentrations of energy

Pedersen, T. F., Y. Liu, and H. H. Stein. 2016. Effects of inclusion of canola meal in weanling pig diets containing different concentrations of energy. J. Anim. Sci. 94(E-Suppl. 5):459 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Digestible calcium requirement for 100 to 130 kg pigs

Merriman, L. A., C. L. Walk, C. M. Parsons, and H. H. Stein. 2016. Digestible calcium requirement for 100 to 130 kg pigs. J. Anim. Sci. 94(E-Suppl. 5):458 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Effects of high protein canola meal on digestibility of phosphorus and growth performance of weanling pigs

She, Y., H. H. Salgado, D. Li, and H. H. Stein. 2016. Effects of high protein canola meal on digestibility of phosphorus and growth performance of weanling pigs. J. Anim. Sci. 94(E-Suppl. 5):457 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Effects of full fat or defatted rice bran and microbial xylanase on growth performance of weanling pigs

Casas, G. A. and H. H. Stein. 2016. Effects of full fat or defatted rice bran and microbial xylanase on growth performance of weanling pigs. J. Anim. Sci. 94(E-Suppl. 5):441 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Effects of microbial phytase on the apparent and standardized total tract digestibility of calcium in milk co-products fed to growing pigs

She, Y., D. Li, and H. H. Stein. 2016. Effects of microbial phytase on the apparent and standardized total tract digestibility of calcium in milk co-products fed to growing pigs. J. Anim. Sci. 94(E-Suppl. 5):436-437 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Effects of using soy protein concentrate as a protein source in diets fed to weanling pigs

Because of the presence of antinutritional factors, the use of soybean meal in weanling pig diets is limited. Animal protein sources can be used, but their cost is high relative to plant protein sources. Therefore, it is economically advantageous to find high quality plant protein sources that weanling pigs can tolerate.

Soybean meal can be processed in various ways to remove or reduce antinutritional factors. One way is to use an alcohol extraction process to remove water-soluble carbohydrates, followed by heat treatment. This process produces soy protein concentrate. An experiment was conducted to determine effects of feeding a soy protein concentrate product called X-SOY 200 on growth performance and blood parameters in weanling pigs.

Authors: 
Publication Type: 

Nutritional value of feed ingredients of plant origin fed to pigs

Stein, H. H., L. V. Lagos, and G. A. Casas. 2016. Nutritional value of feed ingredients of plant origin fed to pigs. Anim. Feed Sci. Technol. 218:33-69. Link to full text (.pdf)

Authors: 

Effects of production area and microbial phytase on the apparent and standardized total tract digestibility of phosphorus in soybean meal fed to growing pigs

Sotak-Peper, K. M., J. C. González-Vega, and H. H. Stein. 2016. Effects of production area and microbial phytase on the apparent and standardized total tract digestibility of phosphorus in soybean meal fed to growing pigs. J. Anim. Sci. 94:2397-2402. Link to full text (.pdf)

Digestibility of energy and concentrations of DE and ME in soy protein concentrate with different particle sizes fed to weanling pigs

Soy protein concentrate is produced by aqueous ethanol extraction of water-soluble carbohydrates from soybean meal, followed by heat treatment. The ethanol extraction process removes soluble carbohydrates, leaving a product that contains at least 65% crude protein (dry matter basis). Because soy protein concentrate contains reduced levels of oligosaccharides, trypsin inhibitors, and lectins compared with conventional soybean meal, it can be used in diets for weanling pigs.

Authors: 
Publication Type: 

Pages