Soybean meal

Energy concentration and amino acid digestibility in high protein canola meal, conventional canola meal, and in soybean meal fed to growing pigs

Liu, Y., N. W. Jaworski, O. J. Rojas, and H. H. Stein. 2016. Energy concentration and amino acid digestibility in high protein canola meal, conventional canola meal, and in soybean meal fed to growing pigs. J. Anim. Feed Sci. Technol. 212:52-62. Link to full text (.pdf)

Authors: 

Concentrations of digestible, metabolizable, and net energy in soybean meal produced in different areas of the United States and fed to pigs

Sotak-Peper, K. M., J. C. González-Vega, and H. H. Stein. 2015. Concentrations of digestible, metabolizable, and net energy in soybean meal produced in different areas of the United States and fed to pigs. J. Anim. Sci. 93:5694-5701. Link to full text (.pdf)

Prediction of digestible and metabolisable energy in soybean meals produced from soybeans of different origins fed to growing pigs

Li, Z., X. Wang, P. Guo, L. Liu, X. Piao, H. H. Stein, D. Li, and C. Lai. 2015. Prediction of digestible and metabolisable energy in soybean meals produced from soybeans of different origins fed to growing pigs. Arch. Anim. Nutr. 69:473-486. Link to full text (.pdf)

Authors: 

Digestibility of energy in a novel source of soy protein concentrate and in soybean meal fed to weanling pigs

Soybean meal is the main protein source used in diets for pigs in the United States, as well as most countries of the world, due to the high quality of the protein it provides. However, soybean meal also contains antinutritional factors that limit its use in weanling pig diets. Pigs do not secrete the enzyme needed for the hydrolysis of raffinose and stachyose, α-galactosidase, in the small intestine. Therefore, these oligosaccharides are not enzymatically digested, but are instead fermented in the small and large intestines. This results in decreased growth performance and increased incidence of diarrhea when fed to weanling pigs.

Oligosaccharides can be removed from soybean meal using an alcohol extraction process, creating soy protein concentrate. Soy protein concentrate has greater digestibility of most amino acids and greater concentrations of digestible energy (DE) and metabolizable energy (ME) than soybean meal. A new source of soy protein concentrate called Nutrivance (Midwest Ag Enterprises Inc., Marshall, MN) has recently been introduced, which is produced using a process combining non-alcohol extraction and enzymatic treatment of soybean meal. The nutritional value of soy protein concentrate produced using this method has not been determined. Therefore, an experiment was conducted to determine the concentrations of DE and ME in soy protein concentrate and to compare these values to DE and ME in soybean meal.

Authors: 
Publication Type: 

Digestibility of phosphorus in a novel source of soy protein concentrate and in soybean meal fed to weanling pigs

Soy protein concentrate is produced by extracting some of the non-protein components of soybean meal, including soluble carbohydrates, from soybean meal. These soluble carbohydrates include oligosaccharides, which reduce the tolerance of young pigs to conventional soybean meal. With the oligosaccharides removed, soy protein concentrate can be used as a source of protein in diets for weanling pigs.

Most soy protein concentrate is produced using an alcohol extraction process. However, a new source of soy protein concentrate called Nutrivance (Midwest Ag Enterprises Inc., Marshall, MN) has recently been introduced, which uses a process combining non-alcohol extraction and enzymatic treatment of soybean meal. An experiment was conducted to determine the apparent total tract digestibility (ATTD) and standardized total tract digestibility (STTD) of phosphorus in this new ingredient.

Authors: 
Publication Type: 

Digestibility of amino acids in a novel source of soy protein concentrate and in soybean meal fed to weanling pigs

Soybean meal is a high quality source of protein in diets fed to pigs. However, soybean meal contains anti-nutritional factors such as trypsin inhibitors and oligosaccharides, which decrease nutrient availability and limit the amount of soybean meal that can be fed in weanling pig diets.

Soy protein concentrate is produced by processing soybean meal to remove some nonprotein components, including the soluble carbohydrates. This leaves soy protein concentrate with a greater concentration of crude protein and amino acids than soybean meal. The presence of oligosaccharides in soybean meal has been shown to reduce the tolerance of young pigs to conventional soybean meal, and therefore, animal proteins rather than soybean meal is often used in diets for young pigs. However, if the oligosaccharides and other antinutritional factors can be removed from soybean meal, it is possible to use soybean meal in diets for young pigs instead of animal proteins.

Typically, an alcohol extraction process has been used to remove soluble carbohydrates from soybean meal to create soy protein concentrate. However, a new source of soy protein concentrate called Nutrivance (Midwest Ag Enterprises Inc., Marshall, MN) has recently been introduced. Nutrivance is produced using a process combining non-alcohol extraction and enzymatic treatment of soybean meal. The nutritional value of soy protein concentrate produced using this method has not been determined. Therefore, an experiment was conducted to determine the digestibility of amino acids in this new source of soy protein concentrate.

Authors: 
Publication Type: 

Concentrations of nitrogen-corrected apparent metabolizable energy and amino acid digestibility in soybean meal from Argentina, Brazil, China, Thailand, and the United States fed to broilers

Sotak-Peper, K. M., R. C. Sulabo, C. M. Parsons, and H. H. Stein. 2015. Concentrations of nitrogen-corrected apparent metabolizable energy and amino acid digestibility in soybean meal from Argentina, Brazil, China, Thailand, and the United States fed to broilers. J. Anim. Sci. 93(Suppl. s3):299 (Abstr.) Link to abstract (.pdf)

Publication Type: 

Determination of amino acid digestibility in soybean meal from different regions of the United States and fed to pigs

Soybeans grown in the northern United States are exposed to fewer growing days and hours of sunlight than soybeans grown elsewhere in the U.S. As a result, soybeans grown in the northern U.S. fix less nitrogen, and have a lower concentration of crude protein, than other U.S. soybeans. However, the concentrations of particular amino acids, particularly indispensable amino acids, are more important for the purposes of diet formulation than the concentration of crude protein. The concentration of amino acids in soybeans grown in different parts of the U.S. has not been determined.

The amount of amino acids in soybean meal that are available to the pig also depends on digestibility, but no research has been conducted to compare the digestibility of amino acids among soybean meal produced in different regions of the U.S. Therefore, an experiment was conducted to compare the standardized ileal digestibility (SID) of amino acids and the concentration of SID amino acids in soybean meal produced in different regions within the United States and fed to growing pigs.

Authors: 
Publication Type: 

Effects of production area and microbial phytase on the apparent and standardized total tract digestibility of phosphorus by growing pigs

The area in which soybeans are grown is known to affect various aspects of the chemical composition of soybean meal produced from those soybeans. However, it is not known if there is a difference in the concentration of phytate, and therefore in phosphorus digestibility, among soybeans from different growing areas. Therefore, an experiment was conducted to determine the concentration of phytate and the apparent (ATTD) and standardized (STTD) total tract digestibility of phosphorus in soybean meal produced from soybeans grown in four different areas in the United States. A secondary objective was to determine the effect of microbial phytase on STTD of P in soybean meal from each of the four areas.

Authors: 
Publication Type: 

Energy concentration and amino acid digestibility in high-protein canola meal, conventional canola meal, and soybean meal fed to growing pigs

Berrocoso, J. D., O. J. Rojas, Y. Liu, J. Shoulders, J. C. González-Vega, and H. H. Stein. 2015. Energy concentration and amino acid digestibility in high-protein canola meal, conventional canola meal, and soybean meal fed to growing pigs. J. Anim. Sci. 93:2208-2217. Link to full text (.pdf)

Concentrations of nitrogen-corrected apparent metabolizable energy and amino acid digestibility in soybean meal from Argentina, Brazil, China, Thailand and the United States fed to broilers

The nutritional value of soybean meal from different sources may vary due to differences in processing techniques and environmental conditions such as growing areas, soil type, and variety of soybeans. The Philippines import soybean for livestock feed from many different countries. However, the nutritional quality of soybean meal from these different origins has not been compared. It is important for producers formulating diets in the Philippines to know whether the same values can be used in formulations for all sources of imported soybean meal. Therefore, two experiments were conducted to determine the concentrations of apparent metabolizable energy (AME) and nitrogen-corrected apparent metabolizable energy (AMEn), and the standardized ileal digestibility (SID) of amino acids by broilers fed soybean meal from Argentina, Brazil, China, Thailand, and the United States.

Authors: 
Publication Type: 

Digestibility of energy and concentrations of digestible and metabolizable energy in processed soybean and rapeseed products fed to growing pigs

Navarro, D. M. D. L., Y. Liu, T. S. Bruun, and H. H. Stein. 2015. Digestibility of energy and concentrations of digestible and metabolizable energy in processed soybean and rapeseed products fed to growing pigs. J. Anim. Sci. 93(Suppl. 2):60 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Effect of microbial phytase on the standardized total tract digestibility and in vitro release of phosphorus in corn, soybean meal, and rice bran fed to growing pigs

Abelilla, J. J., R. C. Sulabo, H. H. Stein, S. P. Acda, A. A. Angeles, M. C. R. Oliveros, and F. E. Merca. 2015. Effect of microbial phytase on the standardized total tract digestibility and in vitro release of phosphorus in corn, soybean meal, and rice bran fed to growing pigs. J. Anim. Sci. 93(Suppl. 2):55 (Abstr.) Link to abstract (.pdf)

Publication Type: 

Energy concentration and phosphorus digestibility in yeast products produced from the ethanol industry, and in brewers’ yeast, fish meal, and soybean meal fed to growing pigs

Kim, B. G, Y. Liu, and H. H. Stein. 2014. Energy concentration and phosphorus digestibility in yeast products produced from the ethanol industry, and in brewers’ yeast, fish meal, and soybean meal fed to growing pigs. J. Anim. Sci. 92:5476-5484. Link to full text (.pdf)

Authors: 

Supplementation of organic and inorganic selenium to diets using grains grown in various regions of the United States with differing natural Se concentrations and fed to grower–finisher swine

Mahan, D. C., M. Azain, T. D. Crenshaw, G. L. Cromwell, C. R. Dove, S. W. Kim, M. D. Lindemann, P. S. Miller, J. E. Pettigrew, H. H. Stein, and E. van Heugten. 2014. Supplementation of organic and inorganic selenium to diets using grains grown in various regions of the United States with differing natural Se concentrations and fed to grower-finisher swine. J. Anim. Sci. 92:4991-4997. Link to full text (.pdf)

Nutritional value of soybean products

Sotak, K. M. and H. H. Stein. 2014. Nutritional value of soybean products. Pages 19-25 in Proc. Midwest Swine Nutr. Conf. Indianapolis, IN, Sep. 4, 2014. Link to full text (.pdf)

Authors: 
Publication Type: 

Amino acid digestibility in field peas, fish meal, corn, soybean meal, and soybean hulls

Mathai, J. K. and H. H. Stein. 2014. Amino acid digestibility in field peas, fish meal, corn, soybean meal, and soybean hulls. J. Anim. Sci 92(E-Suppl. 2):648 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Phosphorus digestibility in high protein canola meals, conventional canola meal, and soybean meal fed to growing pigs

Parr, C. K., Y. Liu, C. M. Parsons, and H. H. Stein. 2014. Phosphorus digestibility in high protein canola meals, conventional canola meal, and soybean meal fed to growing pigs. J. Anim. Sci 92(E-Suppl. 2):641 (Abstr.) Link to abstract (.pdf)

Authors: 
Publication Type: 

Standardized total tract digestibility of phosphorus in copra meal, palm kernel expellers, palm kernel meal, and soybean meal fed to growing pigs

Almaguer, B. L., R. C. Sulabo, Y. Liu, and H. H. Stein. 2014. Standardized total tract digestibility of phosphorus in copra meal, palm kernel expellers, palm kernel meal, and soybean meal fed to growing pigs. J. Anim. Sci. 92:2473-2480. Link to full text (.pdf)

Authors: 

Illinois soybean farmers can support the livestock industry

Stein, H. H. 2014. Illinois soybean farmers can support the livestock industry. Page 5 in Illinois Field & Bean, March 2014. Link to full text (.pdf)

Authors: 

Pages